source: git/src/matrix.c @ 76cf7f1

RELEASE/1.2debug-cidebug-ci-sanitiserswalls-data
Last change on this file since 76cf7f1 was 21904d3, checked in by Olly Betts <olly@…>, 9 years ago

doc/cavern.sgml,doc/manual.sgml,lib/,src/: Drop support for showing
percentage progress in cavern. It's confusing in a multiple-file
dataset as it shows progress in the current file so jumps around.
It also slows down processing, and on a slow machine you'd don't
want that, while on a fast machine processing isn't slow enough for
the progress display to be useful.

  • Property mode set to 100644
File size: 12.5 KB
Line 
1/* matrix.c
2 * Matrix building and solving routines
3 * Copyright (C) 1993-2003,2010,2013 Olly Betts
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
18 */
19
20/*#define SOR 1*/
21
22#if 0
23# define DEBUG_INVALID 1
24#endif
25
26#ifdef HAVE_CONFIG_H
27# include <config.h>
28#endif
29
30#include "debug.h"
31#include "cavern.h"
32#include "filename.h"
33#include "message.h"
34#include "netbits.h"
35#include "matrix.h"
36#include "out.h"
37
38#undef PRINT_MATRICES
39#define PRINT_MATRICES 0
40
41#undef DEBUG_MATRIX_BUILD
42#define DEBUG_MATRIX_BUILD 0
43
44#undef DEBUG_MATRIX
45#define DEBUG_MATRIX 0
46
47#if PRINT_MATRICES
48static void print_matrix(real *M, real *B, long n);
49#endif
50
51static void choleski(real *M, real *B, long n);
52
53#ifdef SOR
54static void sor(real *M, real *B, long n);
55#endif
56
57/* for M(row, col) col must be <= row, so Y <= X */
58# define M(X, Y) ((real *)M)[((((OSSIZE_T)(X)) * ((X) + 1)) >> 1) + (Y)]
59              /* +(Y>X?0*printf("row<col (line %d)\n",__LINE__):0) */
60/*#define M_(X, Y) ((real *)M)[((((OSSIZE_T)(Y)) * ((Y) + 1)) >> 1) + (X)]*/
61
62static int find_stn_in_tab(node *stn);
63static int add_stn_to_tab(node *stn);
64static void build_matrix(node *list);
65
66static long n_stn_tab;
67
68static pos **stn_tab;
69
70extern void
71solve_matrix(node *list)
72{
73   node *stn;
74   long n = 0;
75   FOR_EACH_STN(stn, list) {
76      if (!fixed(stn)) n++;
77   }
78   if (n == 0) return;
79
80   /* we just need n to be a reasonable estimate >= the number
81    * of stations left after reduction. If memory is
82    * plentiful, we can be crass.
83    */
84   stn_tab = osmalloc((OSSIZE_T)(n * ossizeof(pos*)));
85   n_stn_tab = 0;
86
87   FOR_EACH_STN(stn, list) {
88      if (!fixed(stn)) add_stn_to_tab(stn);
89   }
90
91   if (n_stn_tab < n) {
92      /* release unused entries in stn_tab */
93      stn_tab = osrealloc(stn_tab, n_stn_tab * ossizeof(pos*));
94   }
95
96   build_matrix(list);
97#if DEBUG_MATRIX
98   FOR_EACH_STN(stn, list) {
99      printf("(%8.2f, %8.2f, %8.2f ) ", POS(stn, 0), POS(stn, 1), POS(stn, 2));
100      print_prefix(stn->name);
101      putnl();
102   }
103#endif
104
105   osfree(stn_tab);
106}
107
108#ifdef NO_COVARIANCES
109# define FACTOR 1
110#else
111# define FACTOR 3
112#endif
113
114static void
115build_matrix(node *list)
116{
117   real *M;
118   real *B;
119   int dim;
120
121   if (n_stn_tab == 0) {
122      if (!fQuiet)
123         puts(msg(/*Network solved by reduction - no simultaneous equations to solve.*/74));
124      return;
125   }
126   /* (OSSIZE_T) cast may be needed if n_stn_tab>=181 */
127   M = osmalloc((OSSIZE_T)((((OSSIZE_T)n_stn_tab * FACTOR * (n_stn_tab * FACTOR + 1)) >> 1)) * ossizeof(real));
128   B = osmalloc((OSSIZE_T)(n_stn_tab * FACTOR * ossizeof(real)));
129
130   if (!fQuiet) {
131      if (n_stn_tab == 1)
132         out_current_action(msg(/*Solving one equation*/78));
133      else
134         out_current_action1(msg(/*Solving %d simultaneous equations*/75), n_stn_tab);
135   }
136
137#ifdef NO_COVARIANCES
138   dim = 2;
139#else
140   dim = 0; /* fudge next loop for now */
141#endif
142   for ( ; dim >= 0; dim--) {
143      node *stn;
144      int row;
145
146      /* Initialise M and B to zero - zeroing "linearly" will minimise
147       * paging when the matrix is large */
148      {
149         int end = n_stn_tab * FACTOR;
150         for (row = 0; row < end; row++) B[row] = (real)0.0;
151         end = ((OSSIZE_T)n_stn_tab * FACTOR * (n_stn_tab * FACTOR + 1)) >> 1;
152         for (row = 0; row < end; row++) M[row] = (real)0.0;
153      }
154
155      /* Construct matrix - Go thru' stn list & add all forward legs between
156       * two unfixed stations to M (so each leg goes on exactly once).
157       *
158       * All legs between two fixed stations can be ignored here.
159       *
160       * All legs between a fixed and an unfixed station are then considered
161       * from the unfixed end (if we consider them from the fixed end we'd
162       * need to somehow detect when we're at a fixed point cut line and work
163       * out which side we're dealing with at this time. */
164      FOR_EACH_STN(stn, list) {
165#ifdef NO_COVARIANCES
166         real e;
167#else
168         svar e;
169         delta a;
170#endif
171         int f, t;
172         int dirn;
173#if DEBUG_MATRIX_BUILD
174         print_prefix(stn->name);
175         printf(" used: %d colour %ld\n",
176                (!!stn->leg[2]) << 2 | (!!stn -> leg[1]) << 1 | (!!stn->leg[0]),
177                stn->colour);
178
179         for (dirn = 0; dirn <= 2 && stn->leg[dirn]; dirn++) {
180#ifdef NO_COVARIANCES
181            printf("Leg %d, vx=%f, reverse=%d, to ", dirn,
182                   stn->leg[dirn]->v[0], stn->leg[dirn]->l.reverse);
183#else
184            printf("Leg %d, vx=%f, reverse=%d, to ", dirn,
185                   stn->leg[dirn]->v[0][0], stn->leg[dirn]->l.reverse);
186#endif
187            print_prefix(stn->leg[dirn]->l.to->name);
188            putnl();
189         }
190         putnl();
191#endif /* DEBUG_MATRIX_BUILD */
192
193         if (!fixed(stn)) {
194            f = find_stn_in_tab(stn);
195            for (dirn = 0; dirn <= 2 && stn->leg[dirn]; dirn++) {
196               linkfor *leg = stn->leg[dirn];
197               node *to = leg->l.to;
198               if (fixed(to)) {
199                  bool fRev = !data_here(leg);
200                  if (fRev) leg = reverse_leg(leg);
201                  /* Ignore equated nodes */
202#ifdef NO_COVARIANCES
203                  e = leg->v[dim];
204                  if (e != (real)0.0) {
205                     e = ((real)1.0) / e;
206                     M(f,f) += e;
207                     B[f] += e * POS(to, dim);
208                     if (fRev) {
209                        B[f] += leg->d[dim];
210                     } else {
211                        B[f] -= leg->d[dim];
212                     }
213                  }
214#else
215                  if (invert_svar(&e, &leg->v)) {
216                     delta b;
217                     int i;
218                     if (fRev) {
219                        adddd(&a, &POSD(to), &leg->d);
220                     } else {
221                        subdd(&a, &POSD(to), &leg->d);
222                     }
223                     mulsd(&b, &e, &a);
224                     for (i = 0; i < 3; i++) {
225                        M(f * FACTOR + i, f * FACTOR + i) += e[i];
226                        B[f * FACTOR + i] += b[i];
227                     }
228                     M(f * FACTOR + 1, f * FACTOR) += e[3];
229                     M(f * FACTOR + 2, f * FACTOR) += e[4];
230                     M(f * FACTOR + 2, f * FACTOR + 1) += e[5];
231                  }
232#endif
233               } else if (data_here(leg)) {
234                  /* forward leg, unfixed -> unfixed */
235                  t = find_stn_in_tab(to);
236#if DEBUG_MATRIX
237                  printf("Leg %d to %d, var %f, delta %f\n", f, t, e,
238                         leg->d[dim]);
239#endif
240                  /* Ignore equated nodes & lollipops */
241#ifdef NO_COVARIANCES
242                  e = leg->v[dim];
243                  if (t != f && e != (real)0.0) {
244                     real a;
245                     e = ((real)1.0) / e;
246                     M(f,f) += e;
247                     M(t,t) += e;
248                     if (f < t) M(t,f) -= e; else M(f,t) -= e;
249                     a = e * leg->d[dim];
250                     B[f] -= a;
251                     B[t] += a;
252                  }
253#else
254                  if (t != f && invert_svar(&e, &leg->v)) {
255                     int i;
256                     mulsd(&a, &e, &leg->d);
257                     for (i = 0; i < 3; i++) {
258                        M(f * FACTOR + i, f * FACTOR + i) += e[i];
259                        M(t * FACTOR + i, t * FACTOR + i) += e[i];
260                        if (f < t)
261                           M(t * FACTOR + i, f * FACTOR + i) -= e[i];
262                        else
263                           M(f * FACTOR + i, t * FACTOR + i) -= e[i];
264                        B[f * FACTOR + i] -= a[i];
265                        B[t * FACTOR + i] += a[i];
266                     }
267                     M(f * FACTOR + 1, f * FACTOR) += e[3];
268                     M(t * FACTOR + 1, t * FACTOR) += e[3];
269                     M(f * FACTOR + 2, f * FACTOR) += e[4];
270                     M(t * FACTOR + 2, t * FACTOR) += e[4];
271                     M(f * FACTOR + 2, f * FACTOR + 1) += e[5];
272                     M(t * FACTOR + 2, t * FACTOR + 1) += e[5];
273                     if (f < t) {
274                        M(t * FACTOR + 1, f * FACTOR) -= e[3];
275                        M(t * FACTOR, f * FACTOR + 1) -= e[3];
276                        M(t * FACTOR + 2, f * FACTOR) -= e[4];
277                        M(t * FACTOR, f * FACTOR + 2) -= e[4];
278                        M(t * FACTOR + 2, f * FACTOR + 1) -= e[5];
279                        M(t * FACTOR + 1, f * FACTOR + 2) -= e[5];
280                     } else {
281                        M(f * FACTOR + 1, t * FACTOR) -= e[3];
282                        M(f * FACTOR, t * FACTOR + 1) -= e[3];
283                        M(f * FACTOR + 2, t * FACTOR) -= e[4];
284                        M(f * FACTOR, t * FACTOR + 2) -= e[4];
285                        M(f * FACTOR + 2, t * FACTOR + 1) -= e[5];
286                        M(f * FACTOR + 1, t * FACTOR + 2) -= e[5];
287                     }
288                  }
289#endif
290               }
291            }
292         }
293      }
294
295#if PRINT_MATRICES
296      print_matrix(M, B, n_stn_tab * FACTOR); /* 'ave a look! */
297#endif
298
299#ifdef SOR
300      /* defined in network.c, may be altered by -z<letters> on command line */
301      if (optimize & BITA('i'))
302         sor(M, B, n_stn_tab * FACTOR);
303      else
304#endif
305         choleski(M, B, n_stn_tab * FACTOR);
306
307      {
308         int m;
309         for (m = (int)(n_stn_tab - 1); m >= 0; m--) {
310#ifdef NO_COVARIANCES
311            stn_tab[m]->p[dim] = B[m];
312            if (dim == 0) {
313               SVX_ASSERT2(pos_fixed(stn_tab[m]),
314                       "setting station coordinates didn't mark pos as fixed");
315            }
316#else
317            int i;
318            for (i = 0; i < 3; i++) {
319               stn_tab[m]->p[i] = B[m * FACTOR + i];
320            }
321            SVX_ASSERT2(pos_fixed(stn_tab[m]),
322                    "setting station coordinates didn't mark pos as fixed");
323#endif
324         }
325#if EXPLICIT_FIXED_FLAG
326         for (m = n_stn_tab - 1; m >= 0; m--) fixpos(stn_tab[m]);
327#endif
328      }
329   }
330   osfree(B);
331   osfree(M);
332}
333
334static int
335find_stn_in_tab(node *stn)
336{
337   int i = 0;
338   pos *p = stn->name->pos;
339   while (stn_tab[i] != p)
340      if (++i == n_stn_tab) {
341#if DEBUG_INVALID
342         fputs("Station ", stderr);
343         fprint_prefix(stderr, stn->name);
344         fputs(" not in table\n\n", stderr);
345#endif
346#if 0
347         print_prefix(stn->name);
348         printf(" used: %d colour %d\n",
349                (!!stn->leg[2])<<2 | (!!stn->leg[1])<<1 | (!!stn->leg[0]),
350                stn->colour);
351#endif
352         fatalerror(/*Bug in program detected! Please report this to the authors*/11);
353      }
354   return i;
355}
356
357static int
358add_stn_to_tab(node *stn)
359{
360   int i;
361   pos *p = stn->name->pos;
362   for (i = 0; i < n_stn_tab; i++) {
363      if (stn_tab[i] == p) return i;
364   }
365   stn_tab[n_stn_tab++] = p;
366   return i;
367}
368
369/* Solve MX=B for X by Choleski factorisation - modified Choleski actually
370 * since we factor into LDL' while Choleski is just LL'
371 */
372/* Note M must be symmetric positive definite */
373/* routine is entitled to scribble on M and B if it wishes */
374static void
375choleski(real *M, real *B, long n)
376{
377   int i, j, k;
378
379   for (j = 1; j < n; j++) {
380      real V;
381      for (i = 0; i < j; i++) {
382         V = (real)0.0;
383         for (k = 0; k < i; k++) V += M(i,k) * M(j,k) * M(k,k);
384         M(j,i) = (M(j,i) - V) / M(i,i);
385      }
386      V = (real)0.0;
387      for (k = 0; k < j; k++) V += M(j,k) * M(j,k) * M(k,k);
388      M(j,j) -= V; /* may be best to add M() last for numerical reasons too */
389   }
390
391   /* Multiply x by L inverse */
392   for (i = 0; i < n - 1; i++) {
393      for (j = i + 1; j < n; j++) {
394         B[j] -= M(j,i) * B[i];
395      }
396   }
397
398   /* Multiply x by D inverse */
399   for (i = 0; i < n; i++) {
400      B[i] /= M(i,i);
401   }
402
403   /* Multiply x by (L transpose) inverse */
404   for (i = (int)(n - 1); i > 0; i--) {
405      for (j = i - 1; j >= 0; j--) {
406         B[j] -= M(i,j) * B[i];
407      }
408   }
409
410   /* printf("\n%ld/%ld\n\n",flops,flopsTot); */
411}
412
413#ifdef SOR
414/* factor to use for SOR (must have 1 <= SOR_factor < 2) */
415#define SOR_factor 1.93 /* 1.95 */
416
417/* Solve MX=B for X by SOR of Gauss-Siedel */
418/* routine is entitled to scribble on M and B if it wishes */
419static void
420sor(real *M, real *B, long n)
421{
422   real t, x, delta, threshold, t2;
423   int row, col;
424   real *X;
425   long it = 0;
426
427   X = osmalloc(n * ossizeof(real));
428
429   threshold = 0.00001;
430
431   printf("reciprocating diagonal\n"); /* TRANSLATE */
432
433   /* munge diagonal so we can multiply rather than divide */
434   for (row = n - 1; row >= 0; row--) {
435      M(row,row) = 1 / M(row,row);
436      X[row] = 0;
437   }
438
439   printf("starting iteration\n"); /* TRANSLATE */
440
441   do {
442      /*printf("*");*/
443      it++;
444      t = 0.0;
445      for (row = 0; row < n; row++) {
446         x = B[row];
447         for (col = 0; col < row; col++) x -= M(row,col) * X[col];
448         for (col++; col < n; col++) x -= M(col,row) * X[col];
449         x *= M(row,row);
450         delta = (x - X[row]) * SOR_factor;
451         X[row] += delta;
452         t2 = fabs(delta);
453         if (t2 > t) t = t2;
454      }
455      printf("% 6d: %8.6f\n", it, t);
456   } while (t >= threshold && it < 100000);
457
458   if (t >= threshold) {
459      fprintf(stderr, "*not* converged after %ld iterations\n", it);
460      BUG("iteration stinks");
461   }
462
463   printf("%ld iterations\n", it); /* TRANSLATE */
464
465#if 0
466   putnl();
467   for (row = n - 1; row >= 0; row--) {
468      t = 0.0;
469      for (col = 0; col < row; col++) t += M(row, col) * X[col];
470      t += X[row] / M(row, row);
471      for (col = row + 1; col < n; col++)
472         t += M(col, row) * X[col];
473      printf("[ %f %f ]\n", t, B[row]);
474   }
475#endif
476
477   for (row = n - 1; row >= 0; row--) B[row] = X[row];
478
479   osfree(X);
480   printf("\ndone\n"); /* TRANSLATE */
481}
482#endif
483
484#if PRINT_MATRICES
485static void
486print_matrix(real *M, real *B, long n)
487{
488   long row, col;
489   printf("Matrix, M and vector, B:\n");
490   for (row = 0; row < n; row++) {
491      for (col = 0; col <= row; col++) printf("%6.2f\t", M(row, col));
492      for (; col <= n; col++) printf(" \t");
493      printf("\t%6.2f\n", B[row]);
494   }
495   putnl();
496   return;
497}
498#endif
Note: See TracBrowser for help on using the repository browser.