| 1 | /* matrix.c |
|---|
| 2 | * Matrix building and solving routines |
|---|
| 3 | * Copyright (C) 1993-2003,2010,2013 Olly Betts |
|---|
| 4 | * |
|---|
| 5 | * This program is free software; you can redistribute it and/or modify |
|---|
| 6 | * it under the terms of the GNU General Public License as published by |
|---|
| 7 | * the Free Software Foundation; either version 2 of the License, or |
|---|
| 8 | * (at your option) any later version. |
|---|
| 9 | * |
|---|
| 10 | * This program is distributed in the hope that it will be useful, |
|---|
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|---|
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|---|
| 13 | * GNU General Public License for more details. |
|---|
| 14 | * |
|---|
| 15 | * You should have received a copy of the GNU General Public License |
|---|
| 16 | * along with this program; if not, write to the Free Software |
|---|
| 17 | * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
|---|
| 18 | */ |
|---|
| 19 | |
|---|
| 20 | /*#define SOR 1*/ |
|---|
| 21 | |
|---|
| 22 | #if 0 |
|---|
| 23 | # define DEBUG_INVALID 1 |
|---|
| 24 | #endif |
|---|
| 25 | |
|---|
| 26 | #ifdef HAVE_CONFIG_H |
|---|
| 27 | # include <config.h> |
|---|
| 28 | #endif |
|---|
| 29 | |
|---|
| 30 | #include "debug.h" |
|---|
| 31 | #include "cavern.h" |
|---|
| 32 | #include "filename.h" |
|---|
| 33 | #include "message.h" |
|---|
| 34 | #include "netbits.h" |
|---|
| 35 | #include "matrix.h" |
|---|
| 36 | #include "out.h" |
|---|
| 37 | |
|---|
| 38 | #undef PRINT_MATRICES |
|---|
| 39 | #define PRINT_MATRICES 0 |
|---|
| 40 | |
|---|
| 41 | #undef DEBUG_MATRIX_BUILD |
|---|
| 42 | #define DEBUG_MATRIX_BUILD 0 |
|---|
| 43 | |
|---|
| 44 | #undef DEBUG_MATRIX |
|---|
| 45 | #define DEBUG_MATRIX 0 |
|---|
| 46 | |
|---|
| 47 | #if PRINT_MATRICES |
|---|
| 48 | static void print_matrix(real *M, real *B, long n); |
|---|
| 49 | #endif |
|---|
| 50 | |
|---|
| 51 | static void choleski(real *M, real *B, long n); |
|---|
| 52 | |
|---|
| 53 | #ifdef SOR |
|---|
| 54 | static void sor(real *M, real *B, long n); |
|---|
| 55 | #endif |
|---|
| 56 | |
|---|
| 57 | /* for M(row, col) col must be <= row, so Y <= X */ |
|---|
| 58 | # define M(X, Y) ((real *)M)[((((OSSIZE_T)(X)) * ((X) + 1)) >> 1) + (Y)] |
|---|
| 59 | /* +(Y>X?0*printf("row<col (line %d)\n",__LINE__):0) */ |
|---|
| 60 | /*#define M_(X, Y) ((real *)M)[((((OSSIZE_T)(Y)) * ((Y) + 1)) >> 1) + (X)]*/ |
|---|
| 61 | |
|---|
| 62 | static int find_stn_in_tab(node *stn); |
|---|
| 63 | static int add_stn_to_tab(node *stn); |
|---|
| 64 | static void build_matrix(node *list); |
|---|
| 65 | |
|---|
| 66 | static long n_stn_tab; |
|---|
| 67 | |
|---|
| 68 | static pos **stn_tab; |
|---|
| 69 | |
|---|
| 70 | extern void |
|---|
| 71 | solve_matrix(node *list) |
|---|
| 72 | { |
|---|
| 73 | node *stn; |
|---|
| 74 | long n = 0; |
|---|
| 75 | FOR_EACH_STN(stn, list) { |
|---|
| 76 | if (!fixed(stn)) n++; |
|---|
| 77 | } |
|---|
| 78 | if (n == 0) return; |
|---|
| 79 | |
|---|
| 80 | /* we just need n to be a reasonable estimate >= the number |
|---|
| 81 | * of stations left after reduction. If memory is |
|---|
| 82 | * plentiful, we can be crass. |
|---|
| 83 | */ |
|---|
| 84 | stn_tab = osmalloc((OSSIZE_T)(n * ossizeof(pos*))); |
|---|
| 85 | n_stn_tab = 0; |
|---|
| 86 | |
|---|
| 87 | FOR_EACH_STN(stn, list) { |
|---|
| 88 | if (!fixed(stn)) add_stn_to_tab(stn); |
|---|
| 89 | } |
|---|
| 90 | |
|---|
| 91 | if (n_stn_tab < n) { |
|---|
| 92 | /* release unused entries in stn_tab */ |
|---|
| 93 | stn_tab = osrealloc(stn_tab, n_stn_tab * ossizeof(pos*)); |
|---|
| 94 | } |
|---|
| 95 | |
|---|
| 96 | build_matrix(list); |
|---|
| 97 | #if DEBUG_MATRIX |
|---|
| 98 | FOR_EACH_STN(stn, list) { |
|---|
| 99 | printf("(%8.2f, %8.2f, %8.2f ) ", POS(stn, 0), POS(stn, 1), POS(stn, 2)); |
|---|
| 100 | print_prefix(stn->name); |
|---|
| 101 | putnl(); |
|---|
| 102 | } |
|---|
| 103 | #endif |
|---|
| 104 | |
|---|
| 105 | osfree(stn_tab); |
|---|
| 106 | } |
|---|
| 107 | |
|---|
| 108 | #ifdef NO_COVARIANCES |
|---|
| 109 | # define FACTOR 1 |
|---|
| 110 | #else |
|---|
| 111 | # define FACTOR 3 |
|---|
| 112 | #endif |
|---|
| 113 | |
|---|
| 114 | static void |
|---|
| 115 | build_matrix(node *list) |
|---|
| 116 | { |
|---|
| 117 | real *M; |
|---|
| 118 | real *B; |
|---|
| 119 | int dim; |
|---|
| 120 | |
|---|
| 121 | if (n_stn_tab == 0) { |
|---|
| 122 | if (!fQuiet) |
|---|
| 123 | puts(msg(/*Network solved by reduction - no simultaneous equations to solve.*/74)); |
|---|
| 124 | return; |
|---|
| 125 | } |
|---|
| 126 | /* (OSSIZE_T) cast may be needed if n_stn_tab>=181 */ |
|---|
| 127 | M = osmalloc((OSSIZE_T)((((OSSIZE_T)n_stn_tab * FACTOR * (n_stn_tab * FACTOR + 1)) >> 1)) * ossizeof(real)); |
|---|
| 128 | B = osmalloc((OSSIZE_T)(n_stn_tab * FACTOR * ossizeof(real))); |
|---|
| 129 | |
|---|
| 130 | if (!fQuiet) { |
|---|
| 131 | if (n_stn_tab == 1) |
|---|
| 132 | out_current_action(msg(/*Solving one equation*/78)); |
|---|
| 133 | else |
|---|
| 134 | out_current_action1(msg(/*Solving %d simultaneous equations*/75), n_stn_tab); |
|---|
| 135 | } |
|---|
| 136 | |
|---|
| 137 | #ifdef NO_COVARIANCES |
|---|
| 138 | dim = 2; |
|---|
| 139 | #else |
|---|
| 140 | dim = 0; /* fudge next loop for now */ |
|---|
| 141 | #endif |
|---|
| 142 | for ( ; dim >= 0; dim--) { |
|---|
| 143 | node *stn; |
|---|
| 144 | int row; |
|---|
| 145 | |
|---|
| 146 | /* Initialise M and B to zero - zeroing "linearly" will minimise |
|---|
| 147 | * paging when the matrix is large */ |
|---|
| 148 | { |
|---|
| 149 | int end = n_stn_tab * FACTOR; |
|---|
| 150 | for (row = 0; row < end; row++) B[row] = (real)0.0; |
|---|
| 151 | end = ((OSSIZE_T)n_stn_tab * FACTOR * (n_stn_tab * FACTOR + 1)) >> 1; |
|---|
| 152 | for (row = 0; row < end; row++) M[row] = (real)0.0; |
|---|
| 153 | } |
|---|
| 154 | |
|---|
| 155 | /* Construct matrix - Go thru' stn list & add all forward legs between |
|---|
| 156 | * two unfixed stations to M (so each leg goes on exactly once). |
|---|
| 157 | * |
|---|
| 158 | * All legs between two fixed stations can be ignored here. |
|---|
| 159 | * |
|---|
| 160 | * All legs between a fixed and an unfixed station are then considered |
|---|
| 161 | * from the unfixed end (if we consider them from the fixed end we'd |
|---|
| 162 | * need to somehow detect when we're at a fixed point cut line and work |
|---|
| 163 | * out which side we're dealing with at this time. */ |
|---|
| 164 | FOR_EACH_STN(stn, list) { |
|---|
| 165 | #ifdef NO_COVARIANCES |
|---|
| 166 | real e; |
|---|
| 167 | #else |
|---|
| 168 | svar e; |
|---|
| 169 | delta a; |
|---|
| 170 | #endif |
|---|
| 171 | int f, t; |
|---|
| 172 | int dirn; |
|---|
| 173 | #if DEBUG_MATRIX_BUILD |
|---|
| 174 | print_prefix(stn->name); |
|---|
| 175 | printf(" used: %d colour %ld\n", |
|---|
| 176 | (!!stn->leg[2]) << 2 | (!!stn -> leg[1]) << 1 | (!!stn->leg[0]), |
|---|
| 177 | stn->colour); |
|---|
| 178 | |
|---|
| 179 | for (dirn = 0; dirn <= 2 && stn->leg[dirn]; dirn++) { |
|---|
| 180 | #ifdef NO_COVARIANCES |
|---|
| 181 | printf("Leg %d, vx=%f, reverse=%d, to ", dirn, |
|---|
| 182 | stn->leg[dirn]->v[0], stn->leg[dirn]->l.reverse); |
|---|
| 183 | #else |
|---|
| 184 | printf("Leg %d, vx=%f, reverse=%d, to ", dirn, |
|---|
| 185 | stn->leg[dirn]->v[0][0], stn->leg[dirn]->l.reverse); |
|---|
| 186 | #endif |
|---|
| 187 | print_prefix(stn->leg[dirn]->l.to->name); |
|---|
| 188 | putnl(); |
|---|
| 189 | } |
|---|
| 190 | putnl(); |
|---|
| 191 | #endif /* DEBUG_MATRIX_BUILD */ |
|---|
| 192 | |
|---|
| 193 | if (!fixed(stn)) { |
|---|
| 194 | f = find_stn_in_tab(stn); |
|---|
| 195 | for (dirn = 0; dirn <= 2 && stn->leg[dirn]; dirn++) { |
|---|
| 196 | linkfor *leg = stn->leg[dirn]; |
|---|
| 197 | node *to = leg->l.to; |
|---|
| 198 | if (fixed(to)) { |
|---|
| 199 | bool fRev = !data_here(leg); |
|---|
| 200 | if (fRev) leg = reverse_leg(leg); |
|---|
| 201 | /* Ignore equated nodes */ |
|---|
| 202 | #ifdef NO_COVARIANCES |
|---|
| 203 | e = leg->v[dim]; |
|---|
| 204 | if (e != (real)0.0) { |
|---|
| 205 | e = ((real)1.0) / e; |
|---|
| 206 | M(f,f) += e; |
|---|
| 207 | B[f] += e * POS(to, dim); |
|---|
| 208 | if (fRev) { |
|---|
| 209 | B[f] += leg->d[dim]; |
|---|
| 210 | } else { |
|---|
| 211 | B[f] -= leg->d[dim]; |
|---|
| 212 | } |
|---|
| 213 | } |
|---|
| 214 | #else |
|---|
| 215 | if (invert_svar(&e, &leg->v)) { |
|---|
| 216 | delta b; |
|---|
| 217 | int i; |
|---|
| 218 | if (fRev) { |
|---|
| 219 | adddd(&a, &POSD(to), &leg->d); |
|---|
| 220 | } else { |
|---|
| 221 | subdd(&a, &POSD(to), &leg->d); |
|---|
| 222 | } |
|---|
| 223 | mulsd(&b, &e, &a); |
|---|
| 224 | for (i = 0; i < 3; i++) { |
|---|
| 225 | M(f * FACTOR + i, f * FACTOR + i) += e[i]; |
|---|
| 226 | B[f * FACTOR + i] += b[i]; |
|---|
| 227 | } |
|---|
| 228 | M(f * FACTOR + 1, f * FACTOR) += e[3]; |
|---|
| 229 | M(f * FACTOR + 2, f * FACTOR) += e[4]; |
|---|
| 230 | M(f * FACTOR + 2, f * FACTOR + 1) += e[5]; |
|---|
| 231 | } |
|---|
| 232 | #endif |
|---|
| 233 | } else if (data_here(leg)) { |
|---|
| 234 | /* forward leg, unfixed -> unfixed */ |
|---|
| 235 | t = find_stn_in_tab(to); |
|---|
| 236 | #if DEBUG_MATRIX |
|---|
| 237 | printf("Leg %d to %d, var %f, delta %f\n", f, t, e, |
|---|
| 238 | leg->d[dim]); |
|---|
| 239 | #endif |
|---|
| 240 | /* Ignore equated nodes & lollipops */ |
|---|
| 241 | #ifdef NO_COVARIANCES |
|---|
| 242 | e = leg->v[dim]; |
|---|
| 243 | if (t != f && e != (real)0.0) { |
|---|
| 244 | real a; |
|---|
| 245 | e = ((real)1.0) / e; |
|---|
| 246 | M(f,f) += e; |
|---|
| 247 | M(t,t) += e; |
|---|
| 248 | if (f < t) M(t,f) -= e; else M(f,t) -= e; |
|---|
| 249 | a = e * leg->d[dim]; |
|---|
| 250 | B[f] -= a; |
|---|
| 251 | B[t] += a; |
|---|
| 252 | } |
|---|
| 253 | #else |
|---|
| 254 | if (t != f && invert_svar(&e, &leg->v)) { |
|---|
| 255 | int i; |
|---|
| 256 | mulsd(&a, &e, &leg->d); |
|---|
| 257 | for (i = 0; i < 3; i++) { |
|---|
| 258 | M(f * FACTOR + i, f * FACTOR + i) += e[i]; |
|---|
| 259 | M(t * FACTOR + i, t * FACTOR + i) += e[i]; |
|---|
| 260 | if (f < t) |
|---|
| 261 | M(t * FACTOR + i, f * FACTOR + i) -= e[i]; |
|---|
| 262 | else |
|---|
| 263 | M(f * FACTOR + i, t * FACTOR + i) -= e[i]; |
|---|
| 264 | B[f * FACTOR + i] -= a[i]; |
|---|
| 265 | B[t * FACTOR + i] += a[i]; |
|---|
| 266 | } |
|---|
| 267 | M(f * FACTOR + 1, f * FACTOR) += e[3]; |
|---|
| 268 | M(t * FACTOR + 1, t * FACTOR) += e[3]; |
|---|
| 269 | M(f * FACTOR + 2, f * FACTOR) += e[4]; |
|---|
| 270 | M(t * FACTOR + 2, t * FACTOR) += e[4]; |
|---|
| 271 | M(f * FACTOR + 2, f * FACTOR + 1) += e[5]; |
|---|
| 272 | M(t * FACTOR + 2, t * FACTOR + 1) += e[5]; |
|---|
| 273 | if (f < t) { |
|---|
| 274 | M(t * FACTOR + 1, f * FACTOR) -= e[3]; |
|---|
| 275 | M(t * FACTOR, f * FACTOR + 1) -= e[3]; |
|---|
| 276 | M(t * FACTOR + 2, f * FACTOR) -= e[4]; |
|---|
| 277 | M(t * FACTOR, f * FACTOR + 2) -= e[4]; |
|---|
| 278 | M(t * FACTOR + 2, f * FACTOR + 1) -= e[5]; |
|---|
| 279 | M(t * FACTOR + 1, f * FACTOR + 2) -= e[5]; |
|---|
| 280 | } else { |
|---|
| 281 | M(f * FACTOR + 1, t * FACTOR) -= e[3]; |
|---|
| 282 | M(f * FACTOR, t * FACTOR + 1) -= e[3]; |
|---|
| 283 | M(f * FACTOR + 2, t * FACTOR) -= e[4]; |
|---|
| 284 | M(f * FACTOR, t * FACTOR + 2) -= e[4]; |
|---|
| 285 | M(f * FACTOR + 2, t * FACTOR + 1) -= e[5]; |
|---|
| 286 | M(f * FACTOR + 1, t * FACTOR + 2) -= e[5]; |
|---|
| 287 | } |
|---|
| 288 | } |
|---|
| 289 | #endif |
|---|
| 290 | } |
|---|
| 291 | } |
|---|
| 292 | } |
|---|
| 293 | } |
|---|
| 294 | |
|---|
| 295 | #if PRINT_MATRICES |
|---|
| 296 | print_matrix(M, B, n_stn_tab * FACTOR); /* 'ave a look! */ |
|---|
| 297 | #endif |
|---|
| 298 | |
|---|
| 299 | #ifdef SOR |
|---|
| 300 | /* defined in network.c, may be altered by -z<letters> on command line */ |
|---|
| 301 | if (optimize & BITA('i')) |
|---|
| 302 | sor(M, B, n_stn_tab * FACTOR); |
|---|
| 303 | else |
|---|
| 304 | #endif |
|---|
| 305 | choleski(M, B, n_stn_tab * FACTOR); |
|---|
| 306 | |
|---|
| 307 | { |
|---|
| 308 | int m; |
|---|
| 309 | for (m = (int)(n_stn_tab - 1); m >= 0; m--) { |
|---|
| 310 | #ifdef NO_COVARIANCES |
|---|
| 311 | stn_tab[m]->p[dim] = B[m]; |
|---|
| 312 | if (dim == 0) { |
|---|
| 313 | SVX_ASSERT2(pos_fixed(stn_tab[m]), |
|---|
| 314 | "setting station coordinates didn't mark pos as fixed"); |
|---|
| 315 | } |
|---|
| 316 | #else |
|---|
| 317 | int i; |
|---|
| 318 | for (i = 0; i < 3; i++) { |
|---|
| 319 | stn_tab[m]->p[i] = B[m * FACTOR + i]; |
|---|
| 320 | } |
|---|
| 321 | SVX_ASSERT2(pos_fixed(stn_tab[m]), |
|---|
| 322 | "setting station coordinates didn't mark pos as fixed"); |
|---|
| 323 | #endif |
|---|
| 324 | } |
|---|
| 325 | #if EXPLICIT_FIXED_FLAG |
|---|
| 326 | for (m = n_stn_tab - 1; m >= 0; m--) fixpos(stn_tab[m]); |
|---|
| 327 | #endif |
|---|
| 328 | } |
|---|
| 329 | } |
|---|
| 330 | osfree(B); |
|---|
| 331 | osfree(M); |
|---|
| 332 | } |
|---|
| 333 | |
|---|
| 334 | static int |
|---|
| 335 | find_stn_in_tab(node *stn) |
|---|
| 336 | { |
|---|
| 337 | int i = 0; |
|---|
| 338 | pos *p = stn->name->pos; |
|---|
| 339 | while (stn_tab[i] != p) |
|---|
| 340 | if (++i == n_stn_tab) { |
|---|
| 341 | #if DEBUG_INVALID |
|---|
| 342 | fputs("Station ", stderr); |
|---|
| 343 | fprint_prefix(stderr, stn->name); |
|---|
| 344 | fputs(" not in table\n\n", stderr); |
|---|
| 345 | #endif |
|---|
| 346 | #if 0 |
|---|
| 347 | print_prefix(stn->name); |
|---|
| 348 | printf(" used: %d colour %d\n", |
|---|
| 349 | (!!stn->leg[2])<<2 | (!!stn->leg[1])<<1 | (!!stn->leg[0]), |
|---|
| 350 | stn->colour); |
|---|
| 351 | #endif |
|---|
| 352 | fatalerror(/*Bug in program detected! Please report this to the authors*/11); |
|---|
| 353 | } |
|---|
| 354 | return i; |
|---|
| 355 | } |
|---|
| 356 | |
|---|
| 357 | static int |
|---|
| 358 | add_stn_to_tab(node *stn) |
|---|
| 359 | { |
|---|
| 360 | int i; |
|---|
| 361 | pos *p = stn->name->pos; |
|---|
| 362 | for (i = 0; i < n_stn_tab; i++) { |
|---|
| 363 | if (stn_tab[i] == p) return i; |
|---|
| 364 | } |
|---|
| 365 | stn_tab[n_stn_tab++] = p; |
|---|
| 366 | return i; |
|---|
| 367 | } |
|---|
| 368 | |
|---|
| 369 | /* Solve MX=B for X by Choleski factorisation - modified Choleski actually |
|---|
| 370 | * since we factor into LDL' while Choleski is just LL' |
|---|
| 371 | */ |
|---|
| 372 | /* Note M must be symmetric positive definite */ |
|---|
| 373 | /* routine is entitled to scribble on M and B if it wishes */ |
|---|
| 374 | static void |
|---|
| 375 | choleski(real *M, real *B, long n) |
|---|
| 376 | { |
|---|
| 377 | int i, j, k; |
|---|
| 378 | |
|---|
| 379 | for (j = 1; j < n; j++) { |
|---|
| 380 | real V; |
|---|
| 381 | for (i = 0; i < j; i++) { |
|---|
| 382 | V = (real)0.0; |
|---|
| 383 | for (k = 0; k < i; k++) V += M(i,k) * M(j,k) * M(k,k); |
|---|
| 384 | M(j,i) = (M(j,i) - V) / M(i,i); |
|---|
| 385 | } |
|---|
| 386 | V = (real)0.0; |
|---|
| 387 | for (k = 0; k < j; k++) V += M(j,k) * M(j,k) * M(k,k); |
|---|
| 388 | M(j,j) -= V; /* may be best to add M() last for numerical reasons too */ |
|---|
| 389 | } |
|---|
| 390 | |
|---|
| 391 | /* Multiply x by L inverse */ |
|---|
| 392 | for (i = 0; i < n - 1; i++) { |
|---|
| 393 | for (j = i + 1; j < n; j++) { |
|---|
| 394 | B[j] -= M(j,i) * B[i]; |
|---|
| 395 | } |
|---|
| 396 | } |
|---|
| 397 | |
|---|
| 398 | /* Multiply x by D inverse */ |
|---|
| 399 | for (i = 0; i < n; i++) { |
|---|
| 400 | B[i] /= M(i,i); |
|---|
| 401 | } |
|---|
| 402 | |
|---|
| 403 | /* Multiply x by (L transpose) inverse */ |
|---|
| 404 | for (i = (int)(n - 1); i > 0; i--) { |
|---|
| 405 | for (j = i - 1; j >= 0; j--) { |
|---|
| 406 | B[j] -= M(i,j) * B[i]; |
|---|
| 407 | } |
|---|
| 408 | } |
|---|
| 409 | |
|---|
| 410 | /* printf("\n%ld/%ld\n\n",flops,flopsTot); */ |
|---|
| 411 | } |
|---|
| 412 | |
|---|
| 413 | #ifdef SOR |
|---|
| 414 | /* factor to use for SOR (must have 1 <= SOR_factor < 2) */ |
|---|
| 415 | #define SOR_factor 1.93 /* 1.95 */ |
|---|
| 416 | |
|---|
| 417 | /* Solve MX=B for X by SOR of Gauss-Siedel */ |
|---|
| 418 | /* routine is entitled to scribble on M and B if it wishes */ |
|---|
| 419 | static void |
|---|
| 420 | sor(real *M, real *B, long n) |
|---|
| 421 | { |
|---|
| 422 | real t, x, delta, threshold, t2; |
|---|
| 423 | int row, col; |
|---|
| 424 | real *X; |
|---|
| 425 | long it = 0; |
|---|
| 426 | |
|---|
| 427 | X = osmalloc(n * ossizeof(real)); |
|---|
| 428 | |
|---|
| 429 | threshold = 0.00001; |
|---|
| 430 | |
|---|
| 431 | printf("reciprocating diagonal\n"); /* TRANSLATE */ |
|---|
| 432 | |
|---|
| 433 | /* munge diagonal so we can multiply rather than divide */ |
|---|
| 434 | for (row = n - 1; row >= 0; row--) { |
|---|
| 435 | M(row,row) = 1 / M(row,row); |
|---|
| 436 | X[row] = 0; |
|---|
| 437 | } |
|---|
| 438 | |
|---|
| 439 | printf("starting iteration\n"); /* TRANSLATE */ |
|---|
| 440 | |
|---|
| 441 | do { |
|---|
| 442 | /*printf("*");*/ |
|---|
| 443 | it++; |
|---|
| 444 | t = 0.0; |
|---|
| 445 | for (row = 0; row < n; row++) { |
|---|
| 446 | x = B[row]; |
|---|
| 447 | for (col = 0; col < row; col++) x -= M(row,col) * X[col]; |
|---|
| 448 | for (col++; col < n; col++) x -= M(col,row) * X[col]; |
|---|
| 449 | x *= M(row,row); |
|---|
| 450 | delta = (x - X[row]) * SOR_factor; |
|---|
| 451 | X[row] += delta; |
|---|
| 452 | t2 = fabs(delta); |
|---|
| 453 | if (t2 > t) t = t2; |
|---|
| 454 | } |
|---|
| 455 | printf("% 6d: %8.6f\n", it, t); |
|---|
| 456 | } while (t >= threshold && it < 100000); |
|---|
| 457 | |
|---|
| 458 | if (t >= threshold) { |
|---|
| 459 | fprintf(stderr, "*not* converged after %ld iterations\n", it); |
|---|
| 460 | BUG("iteration stinks"); |
|---|
| 461 | } |
|---|
| 462 | |
|---|
| 463 | printf("%ld iterations\n", it); /* TRANSLATE */ |
|---|
| 464 | |
|---|
| 465 | #if 0 |
|---|
| 466 | putnl(); |
|---|
| 467 | for (row = n - 1; row >= 0; row--) { |
|---|
| 468 | t = 0.0; |
|---|
| 469 | for (col = 0; col < row; col++) t += M(row, col) * X[col]; |
|---|
| 470 | t += X[row] / M(row, row); |
|---|
| 471 | for (col = row + 1; col < n; col++) |
|---|
| 472 | t += M(col, row) * X[col]; |
|---|
| 473 | printf("[ %f %f ]\n", t, B[row]); |
|---|
| 474 | } |
|---|
| 475 | #endif |
|---|
| 476 | |
|---|
| 477 | for (row = n - 1; row >= 0; row--) B[row] = X[row]; |
|---|
| 478 | |
|---|
| 479 | osfree(X); |
|---|
| 480 | printf("\ndone\n"); /* TRANSLATE */ |
|---|
| 481 | } |
|---|
| 482 | #endif |
|---|
| 483 | |
|---|
| 484 | #if PRINT_MATRICES |
|---|
| 485 | static void |
|---|
| 486 | print_matrix(real *M, real *B, long n) |
|---|
| 487 | { |
|---|
| 488 | long row, col; |
|---|
| 489 | printf("Matrix, M and vector, B:\n"); |
|---|
| 490 | for (row = 0; row < n; row++) { |
|---|
| 491 | for (col = 0; col <= row; col++) printf("%6.2f\t", M(row, col)); |
|---|
| 492 | for (; col <= n; col++) printf(" \t"); |
|---|
| 493 | printf("\t%6.2f\n", B[row]); |
|---|
| 494 | } |
|---|
| 495 | putnl(); |
|---|
| 496 | return; |
|---|
| 497 | } |
|---|
| 498 | #endif |
|---|