| 1 | /* matrix.c |
|---|
| 2 | * Matrix building and solving routines |
|---|
| 3 | * Copyright (C) 1993-2003,2010,2013,2024 Olly Betts |
|---|
| 4 | * |
|---|
| 5 | * This program is free software; you can redistribute it and/or modify |
|---|
| 6 | * it under the terms of the GNU General Public License as published by |
|---|
| 7 | * the Free Software Foundation; either version 2 of the License, or |
|---|
| 8 | * (at your option) any later version. |
|---|
| 9 | * |
|---|
| 10 | * This program is distributed in the hope that it will be useful, |
|---|
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|---|
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|---|
| 13 | * GNU General Public License for more details. |
|---|
| 14 | * |
|---|
| 15 | * You should have received a copy of the GNU General Public License |
|---|
| 16 | * along with this program; if not, write to the Free Software |
|---|
| 17 | * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
|---|
| 18 | */ |
|---|
| 19 | |
|---|
| 20 | /*#define SOR 1*/ |
|---|
| 21 | |
|---|
| 22 | #if 0 |
|---|
| 23 | # define DEBUG_INVALID 1 |
|---|
| 24 | #endif |
|---|
| 25 | |
|---|
| 26 | #include <config.h> |
|---|
| 27 | |
|---|
| 28 | #include "debug.h" |
|---|
| 29 | #include "cavern.h" |
|---|
| 30 | #include "filename.h" |
|---|
| 31 | #include "message.h" |
|---|
| 32 | #include "netbits.h" |
|---|
| 33 | #include "matrix.h" |
|---|
| 34 | #include "osalloc.h" |
|---|
| 35 | #include "out.h" |
|---|
| 36 | |
|---|
| 37 | #undef PRINT_MATRICES |
|---|
| 38 | #define PRINT_MATRICES 0 |
|---|
| 39 | |
|---|
| 40 | #undef DEBUG_MATRIX_BUILD |
|---|
| 41 | #define DEBUG_MATRIX_BUILD 0 |
|---|
| 42 | |
|---|
| 43 | #undef DEBUG_MATRIX |
|---|
| 44 | #define DEBUG_MATRIX 0 |
|---|
| 45 | |
|---|
| 46 | #if PRINT_MATRICES |
|---|
| 47 | static void print_matrix(real *M, real *B, long n); |
|---|
| 48 | #endif |
|---|
| 49 | |
|---|
| 50 | static void choleski(real *M, real *B, long n); |
|---|
| 51 | |
|---|
| 52 | #ifdef SOR |
|---|
| 53 | static void sor(real *M, real *B, long n); |
|---|
| 54 | #endif |
|---|
| 55 | |
|---|
| 56 | /* for M(row, col) col must be <= row, so Y <= X */ |
|---|
| 57 | # define M(X, Y) ((real *)M)[((((size_t)(X)) * ((X) + 1)) >> 1) + (Y)] |
|---|
| 58 | /* +(Y>X?0*printf("row<col (line %d)\n",__LINE__):0) */ |
|---|
| 59 | /*#define M_(X, Y) ((real *)M)[((((size_t)(Y)) * ((Y) + 1)) >> 1) + (X)]*/ |
|---|
| 60 | |
|---|
| 61 | static void set_row(node *stn, int row_number) { |
|---|
| 62 | // We store the matrix row/column index in stn->colour for quick and easy |
|---|
| 63 | // lookup when copying out the solved station coordinates. |
|---|
| 64 | stn->colour = row_number; |
|---|
| 65 | for (int d = 0; d < 3; d++) { |
|---|
| 66 | linkfor *leg = stn->leg[d]; |
|---|
| 67 | if (!leg) break; |
|---|
| 68 | node *to = leg->l.to; |
|---|
| 69 | if (to->colour < 0 && stn->name->pos == to->name->pos) { |
|---|
| 70 | set_row(to, row_number); |
|---|
| 71 | } |
|---|
| 72 | } |
|---|
| 73 | } |
|---|
| 74 | |
|---|
| 75 | #ifdef NO_COVARIANCES |
|---|
| 76 | # define FACTOR 1 |
|---|
| 77 | #else |
|---|
| 78 | # define FACTOR 3 |
|---|
| 79 | #endif |
|---|
| 80 | |
|---|
| 81 | /* Find positions for a subset of the reduced network by solving a matrix |
|---|
| 82 | * equation. |
|---|
| 83 | * |
|---|
| 84 | * list is a non-empty linked list of unfixed stations to solve for. |
|---|
| 85 | * |
|---|
| 86 | * As a pre-condition, all stations in list must have a negative value for |
|---|
| 87 | * stn->colour. This can be ensured by the caller (which avoids having to |
|---|
| 88 | * make an extra pass over the list just to set the colours suitably). |
|---|
| 89 | */ |
|---|
| 90 | extern void |
|---|
| 91 | solve_matrix(node *list) |
|---|
| 92 | { |
|---|
| 93 | // Assign a matrix row/column index to each group of stations with the same |
|---|
| 94 | // pos. |
|---|
| 95 | // |
|---|
| 96 | // We also set listend to the last station in the list while doing so, which |
|---|
| 97 | // we use after solving to splice list into fixedlist. |
|---|
| 98 | node *listend = NULL; |
|---|
| 99 | size_t n = 0; |
|---|
| 100 | for (node *stn = list; stn; stn = stn->next) { |
|---|
| 101 | listend = stn; |
|---|
| 102 | if (stn->colour < 0) { |
|---|
| 103 | set_row(stn, n++); |
|---|
| 104 | } |
|---|
| 105 | } |
|---|
| 106 | SVX_ASSERT(n > 0); |
|---|
| 107 | |
|---|
| 108 | // Array to map from row/column index to pos. We fill this in as we build |
|---|
| 109 | // the matrix, and use it to know where to copy the solved station |
|---|
| 110 | // coordinates to. |
|---|
| 111 | pos **stn_tab = osmalloc(n * sizeof(pos*)); |
|---|
| 112 | |
|---|
| 113 | real *M = osmalloc((((n * FACTOR * (n * FACTOR + 1)) >> 1)) * sizeof(real)); |
|---|
| 114 | real *B = osmalloc(n * FACTOR * sizeof(real)); |
|---|
| 115 | |
|---|
| 116 | if (!fQuiet) { |
|---|
| 117 | if (n == 1) |
|---|
| 118 | out_current_action(msg(/*Solving one equation*/78)); |
|---|
| 119 | else |
|---|
| 120 | out_current_action1(msg(/*Solving %d simultaneous equations*/75), (int)n); |
|---|
| 121 | } |
|---|
| 122 | |
|---|
| 123 | #ifdef NO_COVARIANCES |
|---|
| 124 | int dim = 2; |
|---|
| 125 | #else |
|---|
| 126 | int dim = 0; /* Collapse loop to a single iteration. */ |
|---|
| 127 | #endif |
|---|
| 128 | for ( ; dim >= 0; dim--) { |
|---|
| 129 | /* Initialise M and B to zero - zeroing "linearly" will minimise |
|---|
| 130 | * paging when the matrix is large */ |
|---|
| 131 | { |
|---|
| 132 | int end = n * FACTOR; |
|---|
| 133 | for (int row = 0; row < end; row++) B[row] = (real)0.0; |
|---|
| 134 | end = ((size_t)n * FACTOR * (n * FACTOR + 1)) >> 1; |
|---|
| 135 | for (int row = 0; row < end; row++) M[row] = (real)0.0; |
|---|
| 136 | } |
|---|
| 137 | |
|---|
| 138 | /* Construct matrix by going through the stn list. |
|---|
| 139 | * |
|---|
| 140 | * All legs between two fixed stations can be ignored here. |
|---|
| 141 | * |
|---|
| 142 | * Other legs we want to add exactly once to M. To achieve this we |
|---|
| 143 | * want to: |
|---|
| 144 | * |
|---|
| 145 | * - add forward legs between two unfixed stations, |
|---|
| 146 | * |
|---|
| 147 | * - add legs from unfixed stations to fixed stations (we do them from |
|---|
| 148 | * the unfixed end so we don't need to detect when we're at a fixed |
|---|
| 149 | * point cut line and determine which side we're currently dealing |
|---|
| 150 | * with). |
|---|
| 151 | * |
|---|
| 152 | * To implement this, we only look at legs from unfixed stations and add |
|---|
| 153 | * a leg if to a fixed station, or to an unfixed station and it's a |
|---|
| 154 | * forward leg. |
|---|
| 155 | */ |
|---|
| 156 | for (node *stn = list; stn; stn = stn->next) { |
|---|
| 157 | if (dim == 0) { |
|---|
| 158 | stn_tab[stn->colour] = stn->name->pos; |
|---|
| 159 | } |
|---|
| 160 | |
|---|
| 161 | #ifdef NO_COVARIANCES |
|---|
| 162 | real e; |
|---|
| 163 | #else |
|---|
| 164 | svar e; |
|---|
| 165 | delta a; |
|---|
| 166 | #endif |
|---|
| 167 | #if DEBUG_MATRIX_BUILD |
|---|
| 168 | print_prefix(stn->name); |
|---|
| 169 | printf(" used: %d colour %ld\n", |
|---|
| 170 | (!!stn->leg[2]) << 2 | (!!stn -> leg[1]) << 1 | (!!stn->leg[0]), |
|---|
| 171 | stn->colour); |
|---|
| 172 | |
|---|
| 173 | for (int dirn = 0; dirn <= 2 && stn->leg[dirn]; dirn++) { |
|---|
| 174 | printf("Leg %d, vx=%f, reverse=%d, to ", dirn, |
|---|
| 175 | stn->leg[dirn]->v[0], stn->leg[dirn]->l.reverse); |
|---|
| 176 | print_prefix(stn->leg[dirn]->l.to->name); |
|---|
| 177 | putnl(); |
|---|
| 178 | } |
|---|
| 179 | putnl(); |
|---|
| 180 | #endif /* DEBUG_MATRIX_BUILD */ |
|---|
| 181 | |
|---|
| 182 | int f = stn->colour; |
|---|
| 183 | SVX_ASSERT(f >= 0); |
|---|
| 184 | { |
|---|
| 185 | for (int dirn = 0; dirn <= 2 && stn->leg[dirn]; dirn++) { |
|---|
| 186 | linkfor *leg = stn->leg[dirn]; |
|---|
| 187 | node *to = leg->l.to; |
|---|
| 188 | if (fixed(to)) { |
|---|
| 189 | bool fRev = !data_here(leg); |
|---|
| 190 | if (fRev) leg = reverse_leg(leg); |
|---|
| 191 | /* Ignore equated nodes */ |
|---|
| 192 | #ifdef NO_COVARIANCES |
|---|
| 193 | e = leg->v[dim]; |
|---|
| 194 | if (e != (real)0.0) { |
|---|
| 195 | e = ((real)1.0) / e; |
|---|
| 196 | M(f,f) += e; |
|---|
| 197 | B[f] += e * POS(to, dim); |
|---|
| 198 | if (fRev) { |
|---|
| 199 | B[f] += leg->d[dim]; |
|---|
| 200 | } else { |
|---|
| 201 | B[f] -= leg->d[dim]; |
|---|
| 202 | } |
|---|
| 203 | } |
|---|
| 204 | #else |
|---|
| 205 | if (invert_svar(&e, &leg->v)) { |
|---|
| 206 | if (fRev) { |
|---|
| 207 | adddd(&a, &POSD(to), &leg->d); |
|---|
| 208 | } else { |
|---|
| 209 | subdd(&a, &POSD(to), &leg->d); |
|---|
| 210 | } |
|---|
| 211 | delta b; |
|---|
| 212 | mulsd(&b, &e, &a); |
|---|
| 213 | for (int i = 0; i < 3; i++) { |
|---|
| 214 | M(f * FACTOR + i, f * FACTOR + i) += e[i]; |
|---|
| 215 | B[f * FACTOR + i] += b[i]; |
|---|
| 216 | } |
|---|
| 217 | M(f * FACTOR + 1, f * FACTOR) += e[3]; |
|---|
| 218 | M(f * FACTOR + 2, f * FACTOR) += e[4]; |
|---|
| 219 | M(f * FACTOR + 2, f * FACTOR + 1) += e[5]; |
|---|
| 220 | } |
|---|
| 221 | #endif |
|---|
| 222 | } else if (data_here(leg) && |
|---|
| 223 | (leg->l.reverse & FLAG_ARTICULATION) == 0) { |
|---|
| 224 | /* forward leg, unfixed -> unfixed */ |
|---|
| 225 | int t = to->colour; |
|---|
| 226 | SVX_ASSERT(t >= 0); |
|---|
| 227 | #if DEBUG_MATRIX |
|---|
| 228 | # ifdef NO_COVARIANCES |
|---|
| 229 | printf("Leg %d to %d, var %f, delta %f\n", f, t, e, |
|---|
| 230 | leg->d[dim]); |
|---|
| 231 | # else |
|---|
| 232 | printf("Leg %d to %d, var (%f, %f, %f; %f, %f, %f), " |
|---|
| 233 | "delta %f\n", f, t, e[0], e[1], e[2], e[3], e[4], e[5], |
|---|
| 234 | leg->d[dim]); |
|---|
| 235 | # endif |
|---|
| 236 | #endif |
|---|
| 237 | /* Ignore equated nodes & lollipops */ |
|---|
| 238 | #ifdef NO_COVARIANCES |
|---|
| 239 | e = leg->v[dim]; |
|---|
| 240 | if (t != f && e != (real)0.0) { |
|---|
| 241 | e = ((real)1.0) / e; |
|---|
| 242 | M(f,f) += e; |
|---|
| 243 | M(t,t) += e; |
|---|
| 244 | if (f < t) M(t,f) -= e; else M(f,t) -= e; |
|---|
| 245 | real a = e * leg->d[dim]; |
|---|
| 246 | B[f] -= a; |
|---|
| 247 | B[t] += a; |
|---|
| 248 | } |
|---|
| 249 | #else |
|---|
| 250 | if (t != f && invert_svar(&e, &leg->v)) { |
|---|
| 251 | mulsd(&a, &e, &leg->d); |
|---|
| 252 | for (int i = 0; i < 3; i++) { |
|---|
| 253 | M(f * FACTOR + i, f * FACTOR + i) += e[i]; |
|---|
| 254 | M(t * FACTOR + i, t * FACTOR + i) += e[i]; |
|---|
| 255 | if (f < t) |
|---|
| 256 | M(t * FACTOR + i, f * FACTOR + i) -= e[i]; |
|---|
| 257 | else |
|---|
| 258 | M(f * FACTOR + i, t * FACTOR + i) -= e[i]; |
|---|
| 259 | B[f * FACTOR + i] -= a[i]; |
|---|
| 260 | B[t * FACTOR + i] += a[i]; |
|---|
| 261 | } |
|---|
| 262 | M(f * FACTOR + 1, f * FACTOR) += e[3]; |
|---|
| 263 | M(t * FACTOR + 1, t * FACTOR) += e[3]; |
|---|
| 264 | M(f * FACTOR + 2, f * FACTOR) += e[4]; |
|---|
| 265 | M(t * FACTOR + 2, t * FACTOR) += e[4]; |
|---|
| 266 | M(f * FACTOR + 2, f * FACTOR + 1) += e[5]; |
|---|
| 267 | M(t * FACTOR + 2, t * FACTOR + 1) += e[5]; |
|---|
| 268 | if (f < t) { |
|---|
| 269 | M(t * FACTOR + 1, f * FACTOR) -= e[3]; |
|---|
| 270 | M(t * FACTOR, f * FACTOR + 1) -= e[3]; |
|---|
| 271 | M(t * FACTOR + 2, f * FACTOR) -= e[4]; |
|---|
| 272 | M(t * FACTOR, f * FACTOR + 2) -= e[4]; |
|---|
| 273 | M(t * FACTOR + 2, f * FACTOR + 1) -= e[5]; |
|---|
| 274 | M(t * FACTOR + 1, f * FACTOR + 2) -= e[5]; |
|---|
| 275 | } else { |
|---|
| 276 | M(f * FACTOR + 1, t * FACTOR) -= e[3]; |
|---|
| 277 | M(f * FACTOR, t * FACTOR + 1) -= e[3]; |
|---|
| 278 | M(f * FACTOR + 2, t * FACTOR) -= e[4]; |
|---|
| 279 | M(f * FACTOR, t * FACTOR + 2) -= e[4]; |
|---|
| 280 | M(f * FACTOR + 2, t * FACTOR + 1) -= e[5]; |
|---|
| 281 | M(f * FACTOR + 1, t * FACTOR + 2) -= e[5]; |
|---|
| 282 | } |
|---|
| 283 | } |
|---|
| 284 | #endif |
|---|
| 285 | } |
|---|
| 286 | } |
|---|
| 287 | } |
|---|
| 288 | } |
|---|
| 289 | |
|---|
| 290 | #if PRINT_MATRICES |
|---|
| 291 | print_matrix(M, B, n * FACTOR); /* 'ave a look! */ |
|---|
| 292 | #endif |
|---|
| 293 | |
|---|
| 294 | #ifdef SOR |
|---|
| 295 | /* defined in network.c, may be altered by -z<letters> on command line */ |
|---|
| 296 | if (optimize & BITA('i')) |
|---|
| 297 | sor(M, B, n * FACTOR); |
|---|
| 298 | else |
|---|
| 299 | #endif |
|---|
| 300 | choleski(M, B, n * FACTOR); |
|---|
| 301 | |
|---|
| 302 | { |
|---|
| 303 | for (int m = (int)(n - 1); m >= 0; m--) { |
|---|
| 304 | #ifdef NO_COVARIANCES |
|---|
| 305 | stn_tab[m]->p[dim] = B[m]; |
|---|
| 306 | if (dim == 0) { |
|---|
| 307 | SVX_ASSERT2(pos_fixed(stn_tab[m]), |
|---|
| 308 | "setting station coordinates didn't mark pos as fixed"); |
|---|
| 309 | } |
|---|
| 310 | #else |
|---|
| 311 | for (int i = 0; i < 3; i++) { |
|---|
| 312 | stn_tab[m]->p[i] = B[m * FACTOR + i]; |
|---|
| 313 | } |
|---|
| 314 | SVX_ASSERT2(pos_fixed(stn_tab[m]), |
|---|
| 315 | "setting station coordinates didn't mark pos as fixed"); |
|---|
| 316 | #endif |
|---|
| 317 | } |
|---|
| 318 | } |
|---|
| 319 | } |
|---|
| 320 | |
|---|
| 321 | // Put the solved stations back on fixedlist. |
|---|
| 322 | listend->next = fixedlist; |
|---|
| 323 | if (fixedlist) fixedlist->prev = listend; |
|---|
| 324 | fixedlist = list; |
|---|
| 325 | |
|---|
| 326 | free(B); |
|---|
| 327 | free(M); |
|---|
| 328 | free(stn_tab); |
|---|
| 329 | |
|---|
| 330 | #if DEBUG_MATRIX |
|---|
| 331 | for (node *stn = list; stn; stn = stn->next) { |
|---|
| 332 | printf("(%8.2f, %8.2f, %8.2f ) ", POS(stn, 0), POS(stn, 1), POS(stn, 2)); |
|---|
| 333 | print_prefix(stn->name); |
|---|
| 334 | putnl(); |
|---|
| 335 | } |
|---|
| 336 | #endif |
|---|
| 337 | } |
|---|
| 338 | |
|---|
| 339 | /* Solve MX=B for X by first factoring M into LDL'. This is a modified form |
|---|
| 340 | * of Choleski factorisation - the original Choleski factorisation is LL', |
|---|
| 341 | * but this modified version has the advantage of avoiding O(n) square root |
|---|
| 342 | * calculations. |
|---|
| 343 | */ |
|---|
| 344 | /* Note M must be symmetric positive definite */ |
|---|
| 345 | /* routine is entitled to scribble on M and B if it wishes */ |
|---|
| 346 | static void |
|---|
| 347 | choleski(real *M, real *B, long n) |
|---|
| 348 | { |
|---|
| 349 | for (int j = 1; j < n; j++) { |
|---|
| 350 | real V; |
|---|
| 351 | for (int i = 0; i < j; i++) { |
|---|
| 352 | V = (real)0.0; |
|---|
| 353 | for (int k = 0; k < i; k++) V += M(i,k) * M(j,k) * M(k,k); |
|---|
| 354 | M(j,i) = (M(j,i) - V) / M(i,i); |
|---|
| 355 | } |
|---|
| 356 | V = (real)0.0; |
|---|
| 357 | for (int k = 0; k < j; k++) V += M(j,k) * M(j,k) * M(k,k); |
|---|
| 358 | M(j,j) -= V; /* may be best to add M() last for numerical reasons too */ |
|---|
| 359 | } |
|---|
| 360 | |
|---|
| 361 | /* Multiply x by L inverse */ |
|---|
| 362 | for (int i = 0; i < n - 1; i++) { |
|---|
| 363 | for (int j = i + 1; j < n; j++) { |
|---|
| 364 | B[j] -= M(j,i) * B[i]; |
|---|
| 365 | } |
|---|
| 366 | } |
|---|
| 367 | |
|---|
| 368 | /* Multiply x by D inverse */ |
|---|
| 369 | for (int i = 0; i < n; i++) { |
|---|
| 370 | B[i] /= M(i,i); |
|---|
| 371 | } |
|---|
| 372 | |
|---|
| 373 | /* Multiply x by (L transpose) inverse */ |
|---|
| 374 | for (int i = (int)(n - 1); i > 0; i--) { |
|---|
| 375 | for (int j = i - 1; j >= 0; j--) { |
|---|
| 376 | B[j] -= M(i,j) * B[i]; |
|---|
| 377 | } |
|---|
| 378 | } |
|---|
| 379 | |
|---|
| 380 | /* printf("\n%ld/%ld\n\n",flops,flopsTot); */ |
|---|
| 381 | } |
|---|
| 382 | |
|---|
| 383 | #ifdef SOR |
|---|
| 384 | /* factor to use for SOR (must have 1 <= SOR_factor < 2) */ |
|---|
| 385 | #define SOR_factor 1.93 /* 1.95 */ |
|---|
| 386 | |
|---|
| 387 | /* Solve MX=B for X by SOR of Gauss-Siedel */ |
|---|
| 388 | /* routine is entitled to scribble on M and B if it wishes */ |
|---|
| 389 | static void |
|---|
| 390 | sor(real *M, real *B, long n) |
|---|
| 391 | { |
|---|
| 392 | long it = 0; |
|---|
| 393 | |
|---|
| 394 | real *X = osmalloc(n * sizeof(real)); |
|---|
| 395 | |
|---|
| 396 | const real threshold = 0.00001; |
|---|
| 397 | |
|---|
| 398 | printf("reciprocating diagonal\n"); /* TRANSLATE */ |
|---|
| 399 | |
|---|
| 400 | /* munge diagonal so we can multiply rather than divide */ |
|---|
| 401 | for (int row = n - 1; row >= 0; row--) { |
|---|
| 402 | M(row,row) = 1 / M(row,row); |
|---|
| 403 | X[row] = 0; |
|---|
| 404 | } |
|---|
| 405 | |
|---|
| 406 | printf("starting iteration\n"); /* TRANSLATE */ |
|---|
| 407 | |
|---|
| 408 | real t; |
|---|
| 409 | do { |
|---|
| 410 | /*printf("*");*/ |
|---|
| 411 | it++; |
|---|
| 412 | t = 0.0; |
|---|
| 413 | for (int row = 0; row < n; row++) { |
|---|
| 414 | real x = B[row]; |
|---|
| 415 | int col; |
|---|
| 416 | for (col = 0; col < row; col++) x -= M(row,col) * X[col]; |
|---|
| 417 | for (col++; col < n; col++) x -= M(col,row) * X[col]; |
|---|
| 418 | x *= M(row,row); |
|---|
| 419 | real sor_delta = (x - X[row]) * SOR_factor; |
|---|
| 420 | X[row] += sor_delta; |
|---|
| 421 | real t2 = fabs(sor_delta); |
|---|
| 422 | if (t2 > t) t = t2; |
|---|
| 423 | } |
|---|
| 424 | printf("% 6ld: %8.6f\n", it, t); |
|---|
| 425 | } while (t >= threshold && it < 100000); |
|---|
| 426 | |
|---|
| 427 | if (t >= threshold) { |
|---|
| 428 | fprintf(stderr, "*not* converged after %ld iterations\n", it); |
|---|
| 429 | BUG("iteration stinks"); |
|---|
| 430 | } |
|---|
| 431 | |
|---|
| 432 | printf("%ld iterations\n", it); /* TRANSLATE */ |
|---|
| 433 | |
|---|
| 434 | #if 0 |
|---|
| 435 | putnl(); |
|---|
| 436 | for (int row = n - 1; row >= 0; row--) { |
|---|
| 437 | t = 0.0; |
|---|
| 438 | for (int col = 0; col < row; col++) t += M(row, col) * X[col]; |
|---|
| 439 | t += X[row] / M(row, row); |
|---|
| 440 | for (col = row + 1; col < n; col++) |
|---|
| 441 | t += M(col, row) * X[col]; |
|---|
| 442 | printf("[ %f %f ]\n", t, B[row]); |
|---|
| 443 | } |
|---|
| 444 | #endif |
|---|
| 445 | |
|---|
| 446 | for (int row = n - 1; row >= 0; row--) B[row] = X[row]; |
|---|
| 447 | |
|---|
| 448 | free(X); |
|---|
| 449 | printf("\ndone\n"); /* TRANSLATE */ |
|---|
| 450 | } |
|---|
| 451 | #endif |
|---|
| 452 | |
|---|
| 453 | #if PRINT_MATRICES |
|---|
| 454 | static void |
|---|
| 455 | print_matrix(real *M, real *B, long n) |
|---|
| 456 | { |
|---|
| 457 | printf("Matrix, M and vector, B:\n"); |
|---|
| 458 | for (long row = 0; row < n; row++) { |
|---|
| 459 | long col; |
|---|
| 460 | for (col = 0; col <= row; col++) printf("%6.2f\t", M(row, col)); |
|---|
| 461 | for (; col <= n; col++) printf(" \t"); |
|---|
| 462 | printf("\t%6.2f\n", B[row]); |
|---|
| 463 | } |
|---|
| 464 | putnl(); |
|---|
| 465 | return; |
|---|
| 466 | } |
|---|
| 467 | #endif |
|---|