source: git/src/matrix.c

Last change on this file was 7811ed7, checked in by Olly Betts <olly@…>, 2 months ago

Merge quietness variables

  • Property mode set to 100644
File size: 12.6 KB
Line 
1/* matrix.c
2 * Matrix building and solving routines
3 * Copyright (C) 1993-2003,2010,2013,2024 Olly Betts
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
18 */
19
20/*#define SOR 1*/
21
22#if 0
23# define DEBUG_INVALID 1
24#endif
25
26#include <config.h>
27
28#include "debug.h"
29#include "cavern.h"
30#include "filename.h"
31#include "message.h"
32#include "netbits.h"
33#include "matrix.h"
34#include "osalloc.h"
35#include "out.h"
36
37#undef PRINT_MATRICES
38#define PRINT_MATRICES 0
39
40#undef DEBUG_MATRIX_BUILD
41#define DEBUG_MATRIX_BUILD 0
42
43#undef DEBUG_MATRIX
44#define DEBUG_MATRIX 0
45
46#if PRINT_MATRICES
47static void print_matrix(real *M, real *B, long n);
48#endif
49
50static void choleski(real *M, real *B, long n);
51
52#ifdef SOR
53static void sor(real *M, real *B, long n);
54#endif
55
56/* for M(row, col) col must be <= row, so Y <= X */
57# define M(X, Y) ((real *)M)[((((size_t)(X)) * ((X) + 1)) >> 1) + (Y)]
58              /* +(Y>X?0*printf("row<col (line %d)\n",__LINE__):0) */
59/*#define M_(X, Y) ((real *)M)[((((size_t)(Y)) * ((Y) + 1)) >> 1) + (X)]*/
60
61static void set_row(node *stn, int row_number) {
62    // We store the matrix row/column index in stn->colour for quick and easy
63    // lookup when copying out the solved station coordinates.
64    stn->colour = row_number;
65    for (int d = 0; d < 3; d++) {
66        linkfor *leg = stn->leg[d];
67        if (!leg) break;
68        node *to = leg->l.to;
69        if (to->colour < 0 && stn->name->pos == to->name->pos) {
70            set_row(to, row_number);
71        }
72    }
73}
74
75#ifdef NO_COVARIANCES
76# define FACTOR 1
77#else
78# define FACTOR 3
79#endif
80
81/* Find positions for a subset of the reduced network by solving a matrix
82 * equation.
83 *
84 * list is a non-empty linked list of unfixed stations to solve for.
85 *
86 * As a pre-condition, all stations in list must have a negative value for
87 * stn->colour.  This can be ensured by the caller (which avoids having to
88 * make an extra pass over the list just to set the colours suitably).
89 */
90extern void
91solve_matrix(node *list)
92{
93   // Assign a matrix row/column index to each group of stations with the same
94   // pos.
95   //
96   // We also set listend to the last station in the list while doing so, which
97   // we use after solving to splice list into fixedlist.
98   node *listend = NULL;
99   size_t n = 0;
100   for (node *stn = list; stn; stn = stn->next) {
101      listend = stn;
102      if (stn->colour < 0) {
103          set_row(stn, n++);
104      }
105   }
106   SVX_ASSERT(n > 0);
107
108   // Array to map from row/column index to pos.  We fill this in as we build
109   // the matrix, and use it to know where to copy the solved station
110   // coordinates to.
111   pos **stn_tab = osmalloc(n * sizeof(pos*));
112
113   real *M = osmalloc((((n * FACTOR * (n * FACTOR + 1)) >> 1)) * sizeof(real));
114   real *B = osmalloc(n * FACTOR * sizeof(real));
115
116   if (n == 1)
117      out_current_action(msg(/*Solving one equation*/78));
118   else
119      out_current_action1(msg(/*Solving %d simultaneous equations*/75), (int)n);
120
121#ifdef NO_COVARIANCES
122   int dim = 2;
123#else
124   int dim = 0; /* Collapse loop to a single iteration. */
125#endif
126   for ( ; dim >= 0; dim--) {
127      /* Initialise M and B to zero - zeroing "linearly" will minimise
128       * paging when the matrix is large */
129      {
130         int end = n * FACTOR;
131         for (int row = 0; row < end; row++) B[row] = (real)0.0;
132         end = ((size_t)n * FACTOR * (n * FACTOR + 1)) >> 1;
133         for (int row = 0; row < end; row++) M[row] = (real)0.0;
134      }
135
136      /* Construct matrix by going through the stn list.
137       *
138       * All legs between two fixed stations can be ignored here.
139       *
140       * Other legs we want to add exactly once to M.  To achieve this we
141       * want to:
142       *
143       * - add forward legs between two unfixed stations,
144       *
145       * - add legs from unfixed stations to fixed stations (we do them from
146       *   the unfixed end so we don't need to detect when we're at a fixed
147       *   point cut line and determine which side we're currently dealing
148       *   with).
149       *
150       * To implement this, we only look at legs from unfixed stations and add
151       * a leg if to a fixed station, or to an unfixed station and it's a
152       * forward leg.
153       */
154      for (node *stn = list; stn; stn = stn->next) {
155         if (dim == 0) {
156             stn_tab[stn->colour] = stn->name->pos;
157         }
158
159#ifdef NO_COVARIANCES
160         real e;
161#else
162         svar e;
163         delta a;
164#endif
165#if DEBUG_MATRIX_BUILD
166         print_prefix(stn->name);
167         printf(" used: %d colour %ld\n",
168                (!!stn->leg[2]) << 2 | (!!stn -> leg[1]) << 1 | (!!stn->leg[0]),
169                stn->colour);
170
171         for (int dirn = 0; dirn <= 2 && stn->leg[dirn]; dirn++) {
172            printf("Leg %d, vx=%f, reverse=%d, to ", dirn,
173                   stn->leg[dirn]->v[0], stn->leg[dirn]->l.reverse);
174            print_prefix(stn->leg[dirn]->l.to->name);
175            putnl();
176         }
177         putnl();
178#endif /* DEBUG_MATRIX_BUILD */
179
180         int f = stn->colour;
181         SVX_ASSERT(f >= 0);
182         {
183            for (int dirn = 0; dirn <= 2 && stn->leg[dirn]; dirn++) {
184               linkfor *leg = stn->leg[dirn];
185               node *to = leg->l.to;
186               if (fixed(to)) {
187                  bool fRev = !data_here(leg);
188                  if (fRev) leg = reverse_leg(leg);
189                  /* Ignore equated nodes */
190#ifdef NO_COVARIANCES
191                  e = leg->v[dim];
192                  if (e != (real)0.0) {
193                     e = ((real)1.0) / e;
194                     M(f,f) += e;
195                     B[f] += e * POS(to, dim);
196                     if (fRev) {
197                        B[f] += leg->d[dim];
198                     } else {
199                        B[f] -= leg->d[dim];
200                     }
201                  }
202#else
203                  if (invert_svar(&e, &leg->v)) {
204                     if (fRev) {
205                        adddd(&a, &POSD(to), &leg->d);
206                     } else {
207                        subdd(&a, &POSD(to), &leg->d);
208                     }
209                     delta b;
210                     mulsd(&b, &e, &a);
211                     for (int i = 0; i < 3; i++) {
212                        M(f * FACTOR + i, f * FACTOR + i) += e[i];
213                        B[f * FACTOR + i] += b[i];
214                     }
215                     M(f * FACTOR + 1, f * FACTOR) += e[3];
216                     M(f * FACTOR + 2, f * FACTOR) += e[4];
217                     M(f * FACTOR + 2, f * FACTOR + 1) += e[5];
218                  }
219#endif
220               } else if (data_here(leg) &&
221                          (leg->l.reverse & FLAG_ARTICULATION) == 0) {
222                  /* forward leg, unfixed -> unfixed */
223                  int t = to->colour;
224                  SVX_ASSERT(t >= 0);
225#if DEBUG_MATRIX
226# ifdef NO_COVARIANCES
227                  printf("Leg %d to %d, var %f, delta %f\n", f, t, e,
228                         leg->d[dim]);
229# else
230                  printf("Leg %d to %d, var (%f, %f, %f; %f, %f, %f), "
231                         "delta %f\n", f, t, e[0], e[1], e[2], e[3], e[4], e[5],
232                         leg->d[dim]);
233# endif
234#endif
235                  /* Ignore equated nodes & lollipops */
236#ifdef NO_COVARIANCES
237                  e = leg->v[dim];
238                  if (t != f && e != (real)0.0) {
239                     e = ((real)1.0) / e;
240                     M(f,f) += e;
241                     M(t,t) += e;
242                     if (f < t) M(t,f) -= e; else M(f,t) -= e;
243                     real a = e * leg->d[dim];
244                     B[f] -= a;
245                     B[t] += a;
246                  }
247#else
248                  if (t != f && invert_svar(&e, &leg->v)) {
249                     mulsd(&a, &e, &leg->d);
250                     for (int i = 0; i < 3; i++) {
251                        M(f * FACTOR + i, f * FACTOR + i) += e[i];
252                        M(t * FACTOR + i, t * FACTOR + i) += e[i];
253                        if (f < t)
254                           M(t * FACTOR + i, f * FACTOR + i) -= e[i];
255                        else
256                           M(f * FACTOR + i, t * FACTOR + i) -= e[i];
257                        B[f * FACTOR + i] -= a[i];
258                        B[t * FACTOR + i] += a[i];
259                     }
260                     M(f * FACTOR + 1, f * FACTOR) += e[3];
261                     M(t * FACTOR + 1, t * FACTOR) += e[3];
262                     M(f * FACTOR + 2, f * FACTOR) += e[4];
263                     M(t * FACTOR + 2, t * FACTOR) += e[4];
264                     M(f * FACTOR + 2, f * FACTOR + 1) += e[5];
265                     M(t * FACTOR + 2, t * FACTOR + 1) += e[5];
266                     if (f < t) {
267                        M(t * FACTOR + 1, f * FACTOR) -= e[3];
268                        M(t * FACTOR, f * FACTOR + 1) -= e[3];
269                        M(t * FACTOR + 2, f * FACTOR) -= e[4];
270                        M(t * FACTOR, f * FACTOR + 2) -= e[4];
271                        M(t * FACTOR + 2, f * FACTOR + 1) -= e[5];
272                        M(t * FACTOR + 1, f * FACTOR + 2) -= e[5];
273                     } else {
274                        M(f * FACTOR + 1, t * FACTOR) -= e[3];
275                        M(f * FACTOR, t * FACTOR + 1) -= e[3];
276                        M(f * FACTOR + 2, t * FACTOR) -= e[4];
277                        M(f * FACTOR, t * FACTOR + 2) -= e[4];
278                        M(f * FACTOR + 2, t * FACTOR + 1) -= e[5];
279                        M(f * FACTOR + 1, t * FACTOR + 2) -= e[5];
280                     }
281                  }
282#endif
283               }
284            }
285         }
286      }
287
288#if PRINT_MATRICES
289      print_matrix(M, B, n * FACTOR); /* 'ave a look! */
290#endif
291
292#ifdef SOR
293      /* defined in network.c, may be altered by -z<letters> on command line */
294      if (optimize & BITA('i'))
295         sor(M, B, n * FACTOR);
296      else
297#endif
298         choleski(M, B, n * FACTOR);
299
300      {
301         for (int m = (int)(n - 1); m >= 0; m--) {
302#ifdef NO_COVARIANCES
303            stn_tab[m]->p[dim] = B[m];
304            if (dim == 0) {
305               SVX_ASSERT2(pos_fixed(stn_tab[m]),
306                       "setting station coordinates didn't mark pos as fixed");
307            }
308#else
309            for (int i = 0; i < 3; i++) {
310               stn_tab[m]->p[i] = B[m * FACTOR + i];
311            }
312            SVX_ASSERT2(pos_fixed(stn_tab[m]),
313                    "setting station coordinates didn't mark pos as fixed");
314#endif
315         }
316      }
317   }
318
319   // Put the solved stations back on fixedlist.
320   listend->next = fixedlist;
321   if (fixedlist) fixedlist->prev = listend;
322   fixedlist = list;
323
324   free(B);
325   free(M);
326   free(stn_tab);
327
328#if DEBUG_MATRIX
329   for (node *stn = list; stn; stn = stn->next) {
330      printf("(%8.2f, %8.2f, %8.2f ) ", POS(stn, 0), POS(stn, 1), POS(stn, 2));
331      print_prefix(stn->name);
332      putnl();
333   }
334#endif
335}
336
337/* Solve MX=B for X by first factoring M into LDL'.  This is a modified form
338 * of Choleski factorisation - the original Choleski factorisation is LL',
339 * but this modified version has the advantage of avoiding O(n) square root
340 * calculations.
341 */
342/* Note M must be symmetric positive definite */
343/* routine is entitled to scribble on M and B if it wishes */
344static void
345choleski(real *M, real *B, long n)
346{
347   for (int j = 1; j < n; j++) {
348      real V;
349      for (int i = 0; i < j; i++) {
350         V = (real)0.0;
351         for (int k = 0; k < i; k++) V += M(i,k) * M(j,k) * M(k,k);
352         M(j,i) = (M(j,i) - V) / M(i,i);
353      }
354      V = (real)0.0;
355      for (int k = 0; k < j; k++) V += M(j,k) * M(j,k) * M(k,k);
356      M(j,j) -= V; /* may be best to add M() last for numerical reasons too */
357   }
358
359   /* Multiply x by L inverse */
360   for (int i = 0; i < n - 1; i++) {
361      for (int j = i + 1; j < n; j++) {
362         B[j] -= M(j,i) * B[i];
363      }
364   }
365
366   /* Multiply x by D inverse */
367   for (int i = 0; i < n; i++) {
368      B[i] /= M(i,i);
369   }
370
371   /* Multiply x by (L transpose) inverse */
372   for (int i = (int)(n - 1); i > 0; i--) {
373      for (int j = i - 1; j >= 0; j--) {
374         B[j] -= M(i,j) * B[i];
375      }
376   }
377
378   /* printf("\n%ld/%ld\n\n",flops,flopsTot); */
379}
380
381#ifdef SOR
382/* factor to use for SOR (must have 1 <= SOR_factor < 2) */
383#define SOR_factor 1.93 /* 1.95 */
384
385/* Solve MX=B for X by SOR of Gauss-Siedel */
386/* routine is entitled to scribble on M and B if it wishes */
387static void
388sor(real *M, real *B, long n)
389{
390   long it = 0;
391
392   real *X = osmalloc(n * sizeof(real));
393
394   const real threshold = 0.00001;
395
396   printf("reciprocating diagonal\n"); /* TRANSLATE */
397
398   /* munge diagonal so we can multiply rather than divide */
399   for (int row = n - 1; row >= 0; row--) {
400      M(row,row) = 1 / M(row,row);
401      X[row] = 0;
402   }
403
404   printf("starting iteration\n"); /* TRANSLATE */
405
406   real t;
407   do {
408      /*printf("*");*/
409      it++;
410      t = 0.0;
411      for (int row = 0; row < n; row++) {
412         real x = B[row];
413         int col;
414         for (col = 0; col < row; col++) x -= M(row,col) * X[col];
415         for (col++; col < n; col++) x -= M(col,row) * X[col];
416         x *= M(row,row);
417         real sor_delta = (x - X[row]) * SOR_factor;
418         X[row] += sor_delta;
419         real t2 = fabs(sor_delta);
420         if (t2 > t) t = t2;
421      }
422      printf("% 6ld: %8.6f\n", it, t);
423   } while (t >= threshold && it < 100000);
424
425   if (t >= threshold) {
426      fprintf(stderr, "*not* converged after %ld iterations\n", it);
427      BUG("iteration stinks");
428   }
429
430   printf("%ld iterations\n", it); /* TRANSLATE */
431
432#if 0
433   putnl();
434   for (int row = n - 1; row >= 0; row--) {
435      t = 0.0;
436      for (int col = 0; col < row; col++) t += M(row, col) * X[col];
437      t += X[row] / M(row, row);
438      for (col = row + 1; col < n; col++)
439         t += M(col, row) * X[col];
440      printf("[ %f %f ]\n", t, B[row]);
441   }
442#endif
443
444   for (int row = n - 1; row >= 0; row--) B[row] = X[row];
445
446   free(X);
447   printf("\ndone\n"); /* TRANSLATE */
448}
449#endif
450
451#if PRINT_MATRICES
452static void
453print_matrix(real *M, real *B, long n)
454{
455   printf("Matrix, M and vector, B:\n");
456   for (long row = 0; row < n; row++) {
457      long col;
458      for (col = 0; col <= row; col++) printf("%6.2f\t", M(row, col));
459      for (; col <= n; col++) printf(" \t");
460      printf("\t%6.2f\n", B[row]);
461   }
462   putnl();
463   return;
464}
465#endif
Note: See TracBrowser for help on using the repository browser.