source: git/src/matrix.c @ 10bde2e

stereo-2025
Last change on this file since 10bde2e was ae917b96, checked in by Olly Betts <olly@…>, 4 months ago

Simplify allocation functions

We don't need the xosmalloc(), osfree(), etc as the memory allocation
on a modern OS isn't limited in the size it can allocate by default.

  • Property mode set to 100644
File size: 12.6 KB
Line 
1/* matrix.c
2 * Matrix building and solving routines
3 * Copyright (C) 1993-2003,2010,2013,2024 Olly Betts
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
18 */
19
20/*#define SOR 1*/
21
22#if 0
23# define DEBUG_INVALID 1
24#endif
25
26#include <config.h>
27
28#include "debug.h"
29#include "cavern.h"
30#include "filename.h"
31#include "message.h"
32#include "netbits.h"
33#include "matrix.h"
34#include "out.h"
35
36#undef PRINT_MATRICES
37#define PRINT_MATRICES 0
38
39#undef DEBUG_MATRIX_BUILD
40#define DEBUG_MATRIX_BUILD 0
41
42#undef DEBUG_MATRIX
43#define DEBUG_MATRIX 0
44
45#if PRINT_MATRICES
46static void print_matrix(real *M, real *B, long n);
47#endif
48
49static void choleski(real *M, real *B, long n);
50
51#ifdef SOR
52static void sor(real *M, real *B, long n);
53#endif
54
55/* for M(row, col) col must be <= row, so Y <= X */
56# define M(X, Y) ((real *)M)[((((size_t)(X)) * ((X) + 1)) >> 1) + (Y)]
57              /* +(Y>X?0*printf("row<col (line %d)\n",__LINE__):0) */
58/*#define M_(X, Y) ((real *)M)[((((size_t)(Y)) * ((Y) + 1)) >> 1) + (X)]*/
59
60static void set_row(node *stn, int row_number) {
61    // We store the matrix row/column index in stn->colour for quick and easy
62    // lookup when copying out the solved station coordinates.
63    stn->colour = row_number;
64    for (int d = 0; d < 3; d++) {
65        linkfor *leg = stn->leg[d];
66        if (!leg) break;
67        node *to = leg->l.to;
68        if (to->colour < 0 && stn->name->pos == to->name->pos) {
69            set_row(to, row_number);
70        }
71    }
72}
73
74#ifdef NO_COVARIANCES
75# define FACTOR 1
76#else
77# define FACTOR 3
78#endif
79
80/* Find positions for a subset of the reduced network by solving a matrix
81 * equation.
82 *
83 * list is a non-empty linked list of unfixed stations to solve for.
84 *
85 * As a pre-condition, all stations in list must have a negative value for
86 * stn->colour.  This can be ensured by the caller (which avoids having to
87 * make an extra pass over the list just to set the colours suitably).
88 */
89extern void
90solve_matrix(node *list)
91{
92   // Assign a matrix row/column index to each group of stations with the same
93   // pos.
94   //
95   // We also set listend to the last station in the list while doing so, which
96   // we use after solving to splice list into fixedlist.
97   node *listend = NULL;
98   size_t n = 0;
99   for (node *stn = list; stn; stn = stn->next) {
100      listend = stn;
101      if (stn->colour < 0) {
102          set_row(stn, n++);
103      }
104   }
105   SVX_ASSERT(n > 0);
106
107   // Array to map from row/column index to pos.  We fill this in as we build
108   // the matrix, and use it to know where to copy the solved station
109   // coordinates to.
110   pos **stn_tab = osmalloc(n * sizeof(pos*));
111
112   real *M = osmalloc((((n * FACTOR * (n * FACTOR + 1)) >> 1)) * sizeof(real));
113   real *B = osmalloc(n * FACTOR * sizeof(real));
114
115   if (!fQuiet) {
116      if (n == 1)
117         out_current_action(msg(/*Solving one equation*/78));
118      else
119         out_current_action1(msg(/*Solving %d simultaneous equations*/75), (int)n);
120   }
121
122#ifdef NO_COVARIANCES
123   int dim = 2;
124#else
125   int dim = 0; /* Collapse loop to a single iteration. */
126#endif
127   for ( ; dim >= 0; dim--) {
128      /* Initialise M and B to zero - zeroing "linearly" will minimise
129       * paging when the matrix is large */
130      {
131         int end = n * FACTOR;
132         for (int row = 0; row < end; row++) B[row] = (real)0.0;
133         end = ((size_t)n * FACTOR * (n * FACTOR + 1)) >> 1;
134         for (int row = 0; row < end; row++) M[row] = (real)0.0;
135      }
136
137      /* Construct matrix by going through the stn list.
138       *
139       * All legs between two fixed stations can be ignored here.
140       *
141       * Other legs we want to add exactly once to M.  To achieve this we
142       * want to:
143       *
144       * - add forward legs between two unfixed stations,
145       *
146       * - add legs from unfixed stations to fixed stations (we do them from
147       *   the unfixed end so we don't need to detect when we're at a fixed
148       *   point cut line and determine which side we're currently dealing
149       *   with).
150       *
151       * To implement this, we only look at legs from unfixed stations and add
152       * a leg if to a fixed station, or to an unfixed station and it's a
153       * forward leg.
154       */
155      for (node *stn = list; stn; stn = stn->next) {
156         if (dim == 0) {
157             stn_tab[stn->colour] = stn->name->pos;
158         }
159
160#ifdef NO_COVARIANCES
161         real e;
162#else
163         svar e;
164         delta a;
165#endif
166#if DEBUG_MATRIX_BUILD
167         print_prefix(stn->name);
168         printf(" used: %d colour %ld\n",
169                (!!stn->leg[2]) << 2 | (!!stn -> leg[1]) << 1 | (!!stn->leg[0]),
170                stn->colour);
171
172         for (int dirn = 0; dirn <= 2 && stn->leg[dirn]; dirn++) {
173            printf("Leg %d, vx=%f, reverse=%d, to ", dirn,
174                   stn->leg[dirn]->v[0], stn->leg[dirn]->l.reverse);
175            print_prefix(stn->leg[dirn]->l.to->name);
176            putnl();
177         }
178         putnl();
179#endif /* DEBUG_MATRIX_BUILD */
180
181         int f = stn->colour;
182         SVX_ASSERT(f >= 0);
183         {
184            for (int dirn = 0; dirn <= 2 && stn->leg[dirn]; dirn++) {
185               linkfor *leg = stn->leg[dirn];
186               node *to = leg->l.to;
187               if (fixed(to)) {
188                  bool fRev = !data_here(leg);
189                  if (fRev) leg = reverse_leg(leg);
190                  /* Ignore equated nodes */
191#ifdef NO_COVARIANCES
192                  e = leg->v[dim];
193                  if (e != (real)0.0) {
194                     e = ((real)1.0) / e;
195                     M(f,f) += e;
196                     B[f] += e * POS(to, dim);
197                     if (fRev) {
198                        B[f] += leg->d[dim];
199                     } else {
200                        B[f] -= leg->d[dim];
201                     }
202                  }
203#else
204                  if (invert_svar(&e, &leg->v)) {
205                     if (fRev) {
206                        adddd(&a, &POSD(to), &leg->d);
207                     } else {
208                        subdd(&a, &POSD(to), &leg->d);
209                     }
210                     delta b;
211                     mulsd(&b, &e, &a);
212                     for (int i = 0; i < 3; i++) {
213                        M(f * FACTOR + i, f * FACTOR + i) += e[i];
214                        B[f * FACTOR + i] += b[i];
215                     }
216                     M(f * FACTOR + 1, f * FACTOR) += e[3];
217                     M(f * FACTOR + 2, f * FACTOR) += e[4];
218                     M(f * FACTOR + 2, f * FACTOR + 1) += e[5];
219                  }
220#endif
221               } else if (data_here(leg) &&
222                          (leg->l.reverse & FLAG_ARTICULATION) == 0) {
223                  /* forward leg, unfixed -> unfixed */
224                  int t = to->colour;
225                  SVX_ASSERT(t >= 0);
226#if DEBUG_MATRIX
227# ifdef NO_COVARIANCES
228                  printf("Leg %d to %d, var %f, delta %f\n", f, t, e,
229                         leg->d[dim]);
230# else
231                  printf("Leg %d to %d, var (%f, %f, %f; %f, %f, %f), "
232                         "delta %f\n", f, t, e[0], e[1], e[2], e[3], e[4], e[5],
233                         leg->d[dim]);
234# endif
235#endif
236                  /* Ignore equated nodes & lollipops */
237#ifdef NO_COVARIANCES
238                  e = leg->v[dim];
239                  if (t != f && e != (real)0.0) {
240                     e = ((real)1.0) / e;
241                     M(f,f) += e;
242                     M(t,t) += e;
243                     if (f < t) M(t,f) -= e; else M(f,t) -= e;
244                     real a = e * leg->d[dim];
245                     B[f] -= a;
246                     B[t] += a;
247                  }
248#else
249                  if (t != f && invert_svar(&e, &leg->v)) {
250                     mulsd(&a, &e, &leg->d);
251                     for (int i = 0; i < 3; i++) {
252                        M(f * FACTOR + i, f * FACTOR + i) += e[i];
253                        M(t * FACTOR + i, t * FACTOR + i) += e[i];
254                        if (f < t)
255                           M(t * FACTOR + i, f * FACTOR + i) -= e[i];
256                        else
257                           M(f * FACTOR + i, t * FACTOR + i) -= e[i];
258                        B[f * FACTOR + i] -= a[i];
259                        B[t * FACTOR + i] += a[i];
260                     }
261                     M(f * FACTOR + 1, f * FACTOR) += e[3];
262                     M(t * FACTOR + 1, t * FACTOR) += e[3];
263                     M(f * FACTOR + 2, f * FACTOR) += e[4];
264                     M(t * FACTOR + 2, t * FACTOR) += e[4];
265                     M(f * FACTOR + 2, f * FACTOR + 1) += e[5];
266                     M(t * FACTOR + 2, t * FACTOR + 1) += e[5];
267                     if (f < t) {
268                        M(t * FACTOR + 1, f * FACTOR) -= e[3];
269                        M(t * FACTOR, f * FACTOR + 1) -= e[3];
270                        M(t * FACTOR + 2, f * FACTOR) -= e[4];
271                        M(t * FACTOR, f * FACTOR + 2) -= e[4];
272                        M(t * FACTOR + 2, f * FACTOR + 1) -= e[5];
273                        M(t * FACTOR + 1, f * FACTOR + 2) -= e[5];
274                     } else {
275                        M(f * FACTOR + 1, t * FACTOR) -= e[3];
276                        M(f * FACTOR, t * FACTOR + 1) -= e[3];
277                        M(f * FACTOR + 2, t * FACTOR) -= e[4];
278                        M(f * FACTOR, t * FACTOR + 2) -= e[4];
279                        M(f * FACTOR + 2, t * FACTOR + 1) -= e[5];
280                        M(f * FACTOR + 1, t * FACTOR + 2) -= e[5];
281                     }
282                  }
283#endif
284               }
285            }
286         }
287      }
288
289#if PRINT_MATRICES
290      print_matrix(M, B, n * FACTOR); /* 'ave a look! */
291#endif
292
293#ifdef SOR
294      /* defined in network.c, may be altered by -z<letters> on command line */
295      if (optimize & BITA('i'))
296         sor(M, B, n * FACTOR);
297      else
298#endif
299         choleski(M, B, n * FACTOR);
300
301      {
302         for (int m = (int)(n - 1); m >= 0; m--) {
303#ifdef NO_COVARIANCES
304            stn_tab[m]->p[dim] = B[m];
305            if (dim == 0) {
306               SVX_ASSERT2(pos_fixed(stn_tab[m]),
307                       "setting station coordinates didn't mark pos as fixed");
308            }
309#else
310            for (int i = 0; i < 3; i++) {
311               stn_tab[m]->p[i] = B[m * FACTOR + i];
312            }
313            SVX_ASSERT2(pos_fixed(stn_tab[m]),
314                    "setting station coordinates didn't mark pos as fixed");
315#endif
316         }
317      }
318   }
319
320   // Put the solved stations back on fixedlist.
321   listend->next = fixedlist;
322   if (fixedlist) fixedlist->prev = listend;
323   fixedlist = list;
324
325   free(B);
326   free(M);
327   free(stn_tab);
328
329#if DEBUG_MATRIX
330   for (node *stn = list; stn; stn = stn->next) {
331      printf("(%8.2f, %8.2f, %8.2f ) ", POS(stn, 0), POS(stn, 1), POS(stn, 2));
332      print_prefix(stn->name);
333      putnl();
334   }
335#endif
336}
337
338/* Solve MX=B for X by first factoring M into LDL'.  This is a modified form
339 * of Choleski factorisation - the original Choleski factorisation is LL',
340 * but this modified version has the advantage of avoiding O(n) square root
341 * calculations.
342 */
343/* Note M must be symmetric positive definite */
344/* routine is entitled to scribble on M and B if it wishes */
345static void
346choleski(real *M, real *B, long n)
347{
348   for (int j = 1; j < n; j++) {
349      real V;
350      for (int i = 0; i < j; i++) {
351         V = (real)0.0;
352         for (int k = 0; k < i; k++) V += M(i,k) * M(j,k) * M(k,k);
353         M(j,i) = (M(j,i) - V) / M(i,i);
354      }
355      V = (real)0.0;
356      for (int k = 0; k < j; k++) V += M(j,k) * M(j,k) * M(k,k);
357      M(j,j) -= V; /* may be best to add M() last for numerical reasons too */
358   }
359
360   /* Multiply x by L inverse */
361   for (int i = 0; i < n - 1; i++) {
362      for (int j = i + 1; j < n; j++) {
363         B[j] -= M(j,i) * B[i];
364      }
365   }
366
367   /* Multiply x by D inverse */
368   for (int i = 0; i < n; i++) {
369      B[i] /= M(i,i);
370   }
371
372   /* Multiply x by (L transpose) inverse */
373   for (int i = (int)(n - 1); i > 0; i--) {
374      for (int j = i - 1; j >= 0; j--) {
375         B[j] -= M(i,j) * B[i];
376      }
377   }
378
379   /* printf("\n%ld/%ld\n\n",flops,flopsTot); */
380}
381
382#ifdef SOR
383/* factor to use for SOR (must have 1 <= SOR_factor < 2) */
384#define SOR_factor 1.93 /* 1.95 */
385
386/* Solve MX=B for X by SOR of Gauss-Siedel */
387/* routine is entitled to scribble on M and B if it wishes */
388static void
389sor(real *M, real *B, long n)
390{
391   long it = 0;
392
393   real *X = osmalloc(n * sizeof(real));
394
395   const real threshold = 0.00001;
396
397   printf("reciprocating diagonal\n"); /* TRANSLATE */
398
399   /* munge diagonal so we can multiply rather than divide */
400   for (int row = n - 1; row >= 0; row--) {
401      M(row,row) = 1 / M(row,row);
402      X[row] = 0;
403   }
404
405   printf("starting iteration\n"); /* TRANSLATE */
406
407   real t;
408   do {
409      /*printf("*");*/
410      it++;
411      t = 0.0;
412      for (int row = 0; row < n; row++) {
413         real x = B[row];
414         int col;
415         for (col = 0; col < row; col++) x -= M(row,col) * X[col];
416         for (col++; col < n; col++) x -= M(col,row) * X[col];
417         x *= M(row,row);
418         real sor_delta = (x - X[row]) * SOR_factor;
419         X[row] += sor_delta;
420         real t2 = fabs(sor_delta);
421         if (t2 > t) t = t2;
422      }
423      printf("% 6ld: %8.6f\n", it, t);
424   } while (t >= threshold && it < 100000);
425
426   if (t >= threshold) {
427      fprintf(stderr, "*not* converged after %ld iterations\n", it);
428      BUG("iteration stinks");
429   }
430
431   printf("%ld iterations\n", it); /* TRANSLATE */
432
433#if 0
434   putnl();
435   for (int row = n - 1; row >= 0; row--) {
436      t = 0.0;
437      for (int col = 0; col < row; col++) t += M(row, col) * X[col];
438      t += X[row] / M(row, row);
439      for (col = row + 1; col < n; col++)
440         t += M(col, row) * X[col];
441      printf("[ %f %f ]\n", t, B[row]);
442   }
443#endif
444
445   for (int row = n - 1; row >= 0; row--) B[row] = X[row];
446
447   free(X);
448   printf("\ndone\n"); /* TRANSLATE */
449}
450#endif
451
452#if PRINT_MATRICES
453static void
454print_matrix(real *M, real *B, long n)
455{
456   printf("Matrix, M and vector, B:\n");
457   for (long row = 0; row < n; row++) {
458      long col;
459      for (col = 0; col <= row; col++) printf("%6.2f\t", M(row, col));
460      for (; col <= n; col++) printf(" \t");
461      printf("\t%6.2f\n", B[row]);
462   }
463   putnl();
464   return;
465}
466#endif
Note: See TracBrowser for help on using the repository browser.