source: git/src/matrix.c @ bfccefb

Last change on this file since bfccefb was 7811ed7, checked in by Olly Betts <olly@…>, 2 months ago

Merge quietness variables

  • Property mode set to 100644
File size: 12.6 KB
RevLine 
[421b7d2]1/* matrix.c
[d1b1380]2 * Matrix building and solving routines
[2d8d46d]3 * Copyright (C) 1993-2003,2010,2013,2024 Olly Betts
[846746e]4 *
[89231c4]5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
[846746e]9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
[89231c4]12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 * GNU General Public License for more details.
[846746e]14 *
[89231c4]15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
[ecbc6c18]17 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
[d1b1380]18 */
19
[2164fa4]20/*#define SOR 1*/
[702f518]21
[032ed06]22#if 0
23# define DEBUG_INVALID 1
24#endif
25
[4c83f84]26#include <config.h>
[d1b1380]27
28#include "debug.h"
[a420b49]29#include "cavern.h"
[c082b69]30#include "filename.h"
31#include "message.h"
[d1b1380]32#include "netbits.h"
33#include "matrix.h"
[a49a80c0]34#include "osalloc.h"
[d1b1380]35#include "out.h"
36
37#undef PRINT_MATRICES
38#define PRINT_MATRICES 0
39
40#undef DEBUG_MATRIX_BUILD
41#define DEBUG_MATRIX_BUILD 0
42
43#undef DEBUG_MATRIX
44#define DEBUG_MATRIX 0
45
46#if PRINT_MATRICES
[9965b2b]47static void print_matrix(real *M, real *B, long n);
[d1b1380]48#endif
49
[9965b2b]50static void choleski(real *M, real *B, long n);
[3fde384f]51
[d1b1380]52#ifdef SOR
[9965b2b]53static void sor(real *M, real *B, long n);
[d1b1380]54#endif
55
[a420b49]56/* for M(row, col) col must be <= row, so Y <= X */
[ae917b96]57# define M(X, Y) ((real *)M)[((((size_t)(X)) * ((X) + 1)) >> 1) + (Y)]
[421b7d2]58              /* +(Y>X?0*printf("row<col (line %d)\n",__LINE__):0) */
[ae917b96]59/*#define M_(X, Y) ((real *)M)[((((size_t)(Y)) * ((Y) + 1)) >> 1) + (X)]*/
[d1b1380]60
[9814fb7]61static void set_row(node *stn, int row_number) {
[2d8d46d]62    // We store the matrix row/column index in stn->colour for quick and easy
63    // lookup when copying out the solved station coordinates.
64    stn->colour = row_number;
65    for (int d = 0; d < 3; d++) {
66        linkfor *leg = stn->leg[d];
67        if (!leg) break;
68        node *to = leg->l.to;
[55cd7d6]69        if (to->colour < 0 && stn->name->pos == to->name->pos) {
[9814fb7]70            set_row(to, row_number);
[2d8d46d]71        }
72    }
73}
[d1b1380]74
[2d8d46d]75#ifdef NO_COVARIANCES
76# define FACTOR 1
77#else
78# define FACTOR 3
79#endif
[d1b1380]80
[55cd7d6]81/* Find positions for a subset of the reduced network by solving a matrix
82 * equation.
83 *
84 * list is a non-empty linked list of unfixed stations to solve for.
85 *
86 * As a pre-condition, all stations in list must have a negative value for
87 * stn->colour.  This can be ensured by the caller (which avoids having to
88 * make an extra pass over the list just to set the colours suitably).
89 */
[032ed06]90extern void
[d9b5db53]91solve_matrix(node *list)
[032ed06]92{
[2d8d46d]93   // Assign a matrix row/column index to each group of stations with the same
94   // pos.
[55cd7d6]95   //
96   // We also set listend to the last station in the list while doing so, which
[bf9faf6]97   // we use after solving to splice list into fixedlist.
[55cd7d6]98   node *listend = NULL;
[ae917b96]99   size_t n = 0;
[55cd7d6]100   for (node *stn = list; stn; stn = stn->next) {
101      listend = stn;
102      if (stn->colour < 0) {
[9814fb7]103          set_row(stn, n++);
[2d8d46d]104      }
[2164fa4]105   }
[2d8d46d]106   SVX_ASSERT(n > 0);
[d1b1380]107
[2d8d46d]108   // Array to map from row/column index to pos.  We fill this in as we build
109   // the matrix, and use it to know where to copy the solved station
110   // coordinates to.
[ae917b96]111   pos **stn_tab = osmalloc(n * sizeof(pos*));
[3fde384f]112
[ae917b96]113   real *M = osmalloc((((n * FACTOR * (n * FACTOR + 1)) >> 1)) * sizeof(real));
114   real *B = osmalloc(n * FACTOR * sizeof(real));
[dbd68203]115
[7811ed7]116   if (n == 1)
117      out_current_action(msg(/*Solving one equation*/78));
118   else
119      out_current_action1(msg(/*Solving %d simultaneous equations*/75), (int)n);
[dbd68203]120
[3fde384f]121#ifdef NO_COVARIANCES
[5bb3dc4]122   int dim = 2;
[3fde384f]123#else
[2d8d46d]124   int dim = 0; /* Collapse loop to a single iteration. */
[3fde384f]125#endif
[a420b49]126   for ( ; dim >= 0; dim--) {
[907fe10]127      /* Initialise M and B to zero - zeroing "linearly" will minimise
[421b7d2]128       * paging when the matrix is large */
[66de220]129      {
[2d8d46d]130         int end = n * FACTOR;
131         for (int row = 0; row < end; row++) B[row] = (real)0.0;
[ae917b96]132         end = ((size_t)n * FACTOR * (n * FACTOR + 1)) >> 1;
[2d8d46d]133         for (int row = 0; row < end; row++) M[row] = (real)0.0;
[66de220]134      }
[dbd68203]135
[3c7ab9a]136      /* Construct matrix by going through the stn list.
[421b7d2]137       *
[907fe10]138       * All legs between two fixed stations can be ignored here.
[421b7d2]139       *
[3c7ab9a]140       * Other legs we want to add exactly once to M.  To achieve this we
[07ff034]141       * want to:
[3c7ab9a]142       *
143       * - add forward legs between two unfixed stations,
144       *
145       * - add legs from unfixed stations to fixed stations (we do them from
146       *   the unfixed end so we don't need to detect when we're at a fixed
147       *   point cut line and determine which side we're currently dealing
148       *   with).
149       *
150       * To implement this, we only look at legs from unfixed stations and add
151       * a leg if to a fixed station, or to an unfixed station and it's a
152       * forward leg.
153       */
[55cd7d6]154      for (node *stn = list; stn; stn = stn->next) {
[2d8d46d]155         if (dim == 0) {
[55cd7d6]156             stn_tab[stn->colour] = stn->name->pos;
[2d8d46d]157         }
158
[2164fa4]159#ifdef NO_COVARIANCES
160         real e;
161#else
[dac18d8]162         svar e;
[eb18f4d]163         delta a;
[2164fa4]164#endif
[b5d3988]165#if DEBUG_MATRIX_BUILD
[dbd68203]166         print_prefix(stn->name);
[b5d3988]167         printf(" used: %d colour %ld\n",
[a420b49]168                (!!stn->leg[2]) << 2 | (!!stn -> leg[1]) << 1 | (!!stn->leg[0]),
[b5d3988]169                stn->colour);
[3fde384f]170
[5bb3dc4]171         for (int dirn = 0; dirn <= 2 && stn->leg[dirn]; dirn++) {
[907fe10]172            printf("Leg %d, vx=%f, reverse=%d, to ", dirn,
173                   stn->leg[dirn]->v[0], stn->leg[dirn]->l.reverse);
174            print_prefix(stn->leg[dirn]->l.to->name);
175            putnl();
176         }
[dbd68203]177         putnl();
[d1b1380]178#endif /* DEBUG_MATRIX_BUILD */
[b5d3988]179
[2d8d46d]180         int f = stn->colour;
[55cd7d6]181         SVX_ASSERT(f >= 0);
182         {
[5bb3dc4]183            for (int dirn = 0; dirn <= 2 && stn->leg[dirn]; dirn++) {
[907fe10]184               linkfor *leg = stn->leg[dirn];
185               node *to = leg->l.to;
[55cd7d6]186               if (fixed(to)) {
[907fe10]187                  bool fRev = !data_here(leg);
188                  if (fRev) leg = reverse_leg(leg);
189                  /* Ignore equated nodes */
[3fde384f]190#ifdef NO_COVARIANCES
[907fe10]191                  e = leg->v[dim];
192                  if (e != (real)0.0) {
193                     e = ((real)1.0) / e;
194                     M(f,f) += e;
[f52dcc7]195                     B[f] += e * POS(to, dim);
[907fe10]196                     if (fRev) {
[f52dcc7]197                        B[f] += leg->d[dim];
[907fe10]198                     } else {
[f52dcc7]199                        B[f] -= leg->d[dim];
[564f471]200                     }
[907fe10]201                  }
[3fde384f]202#else
[907fe10]203                  if (invert_svar(&e, &leg->v)) {
204                     if (fRev) {
205                        adddd(&a, &POSD(to), &leg->d);
206                     } else {
207                        subdd(&a, &POSD(to), &leg->d);
208                     }
[5bb3dc4]209                     delta b;
[907fe10]210                     mulsd(&b, &e, &a);
[5bb3dc4]211                     for (int i = 0; i < 3; i++) {
[907fe10]212                        M(f * FACTOR + i, f * FACTOR + i) += e[i];
213                        B[f * FACTOR + i] += b[i];
[564f471]214                     }
[907fe10]215                     M(f * FACTOR + 1, f * FACTOR) += e[3];
216                     M(f * FACTOR + 2, f * FACTOR) += e[4];
217                     M(f * FACTOR + 2, f * FACTOR + 1) += e[5];
218                  }
[3fde384f]219#endif
[55cd7d6]220               } else if (data_here(leg) &&
221                          (leg->l.reverse & FLAG_ARTICULATION) == 0) {
[907fe10]222                  /* forward leg, unfixed -> unfixed */
[55cd7d6]223                  int t = to->colour;
224                  SVX_ASSERT(t >= 0);
[d1b1380]225#if DEBUG_MATRIX
[16a78e0]226# ifdef NO_COVARIANCES
[907fe10]227                  printf("Leg %d to %d, var %f, delta %f\n", f, t, e,
228                         leg->d[dim]);
[16a78e0]229# else
230                  printf("Leg %d to %d, var (%f, %f, %f; %f, %f, %f), "
231                         "delta %f\n", f, t, e[0], e[1], e[2], e[3], e[4], e[5],
232                         leg->d[dim]);
233# endif
[d1b1380]234#endif
[907fe10]235                  /* Ignore equated nodes & lollipops */
[3fde384f]236#ifdef NO_COVARIANCES
[907fe10]237                  e = leg->v[dim];
238                  if (t != f && e != (real)0.0) {
239                     e = ((real)1.0) / e;
240                     M(f,f) += e;
241                     M(t,t) += e;
242                     if (f < t) M(t,f) -= e; else M(f,t) -= e;
[5bb3dc4]243                     real a = e * leg->d[dim];
[907fe10]244                     B[f] -= a;
245                     B[t] += a;
246                  }
[3fde384f]247#else
[907fe10]248                  if (t != f && invert_svar(&e, &leg->v)) {
249                     mulsd(&a, &e, &leg->d);
[5bb3dc4]250                     for (int i = 0; i < 3; i++) {
[907fe10]251                        M(f * FACTOR + i, f * FACTOR + i) += e[i];
252                        M(t * FACTOR + i, t * FACTOR + i) += e[i];
253                        if (f < t)
254                           M(t * FACTOR + i, f * FACTOR + i) -= e[i];
255                        else
256                           M(f * FACTOR + i, t * FACTOR + i) -= e[i];
257                        B[f * FACTOR + i] -= a[i];
258                        B[t * FACTOR + i] += a[i];
259                     }
260                     M(f * FACTOR + 1, f * FACTOR) += e[3];
261                     M(t * FACTOR + 1, t * FACTOR) += e[3];
262                     M(f * FACTOR + 2, f * FACTOR) += e[4];
263                     M(t * FACTOR + 2, t * FACTOR) += e[4];
264                     M(f * FACTOR + 2, f * FACTOR + 1) += e[5];
265                     M(t * FACTOR + 2, t * FACTOR + 1) += e[5];
266                     if (f < t) {
267                        M(t * FACTOR + 1, f * FACTOR) -= e[3];
268                        M(t * FACTOR, f * FACTOR + 1) -= e[3];
269                        M(t * FACTOR + 2, f * FACTOR) -= e[4];
270                        M(t * FACTOR, f * FACTOR + 2) -= e[4];
271                        M(t * FACTOR + 2, f * FACTOR + 1) -= e[5];
272                        M(t * FACTOR + 1, f * FACTOR + 2) -= e[5];
273                     } else {
274                        M(f * FACTOR + 1, t * FACTOR) -= e[3];
275                        M(f * FACTOR, t * FACTOR + 1) -= e[3];
276                        M(f * FACTOR + 2, t * FACTOR) -= e[4];
277                        M(f * FACTOR, t * FACTOR + 2) -= e[4];
278                        M(f * FACTOR + 2, t * FACTOR + 1) -= e[5];
279                        M(f * FACTOR + 1, t * FACTOR + 2) -= e[5];
[dbd68203]280                     }
281                  }
[907fe10]282#endif
[564f471]283               }
[907fe10]284            }
[dbd68203]285         }
[d1b1380]286      }
287
288#if PRINT_MATRICES
[2d8d46d]289      print_matrix(M, B, n * FACTOR); /* 'ave a look! */
[d1b1380]290#endif
291
292#ifdef SOR
[032ed06]293      /* defined in network.c, may be altered by -z<letters> on command line */
[a420b49]294      if (optimize & BITA('i'))
[2d8d46d]295         sor(M, B, n * FACTOR);
[dbd68203]296      else
[d1b1380]297#endif
[2d8d46d]298         choleski(M, B, n * FACTOR);
[d1b1380]299
[dbd68203]300      {
[2d8d46d]301         for (int m = (int)(n - 1); m >= 0; m--) {
[3fde384f]302#ifdef NO_COVARIANCES
[c19f129]303            stn_tab[m]->p[dim] = B[m];
[032ed06]304            if (dim == 0) {
[4c07c51]305               SVX_ASSERT2(pos_fixed(stn_tab[m]),
[032ed06]306                       "setting station coordinates didn't mark pos as fixed");
307            }
[3fde384f]308#else
[5bb3dc4]309            for (int i = 0; i < 3; i++) {
[c19f129]310               stn_tab[m]->p[i] = B[m * FACTOR + i];
[702f518]311            }
[4c07c51]312            SVX_ASSERT2(pos_fixed(stn_tab[m]),
[032ed06]313                    "setting station coordinates didn't mark pos as fixed");
[d1b1380]314#endif
[4a59b4f]315         }
[dbd68203]316      }
317   }
[55cd7d6]318
[bf9faf6]319   // Put the solved stations back on fixedlist.
320   listend->next = fixedlist;
321   if (fixedlist) fixedlist->prev = listend;
322   fixedlist = list;
[55cd7d6]323
[ae917b96]324   free(B);
325   free(M);
326   free(stn_tab);
[2d8d46d]327
328#if DEBUG_MATRIX
[55cd7d6]329   for (node *stn = list; stn; stn = stn->next) {
[2d8d46d]330      printf("(%8.2f, %8.2f, %8.2f ) ", POS(stn, 0), POS(stn, 1), POS(stn, 2));
331      print_prefix(stn->name);
332      putnl();
333   }
334#endif
[d1b1380]335}
336
[4e7fb5e]337/* Solve MX=B for X by first factoring M into LDL'.  This is a modified form
338 * of Choleski factorisation - the original Choleski factorisation is LL',
339 * but this modified version has the advantage of avoiding O(n) square root
340 * calculations.
[702f518]341 */
[d1b1380]342/* Note M must be symmetric positive definite */
343/* routine is entitled to scribble on M and B if it wishes */
[a420b49]344static void
[9965b2b]345choleski(real *M, real *B, long n)
[a420b49]346{
[5bb3dc4]347   for (int j = 1; j < n; j++) {
[3fde384f]348      real V;
[5bb3dc4]349      for (int i = 0; i < j; i++) {
[421b7d2]350         V = (real)0.0;
[5bb3dc4]351         for (int k = 0; k < i; k++) V += M(i,k) * M(j,k) * M(k,k);
[a420b49]352         M(j,i) = (M(j,i) - V) / M(i,i);
[dbd68203]353      }
354      V = (real)0.0;
[5bb3dc4]355      for (int k = 0; k < j; k++) V += M(j,k) * M(j,k) * M(k,k);
[3fde384f]356      M(j,j) -= V; /* may be best to add M() last for numerical reasons too */
[dbd68203]357   }
[d1b1380]358
[dbd68203]359   /* Multiply x by L inverse */
[5bb3dc4]360   for (int i = 0; i < n - 1; i++) {
361      for (int j = i + 1; j < n; j++) {
[dbd68203]362         B[j] -= M(j,i) * B[i];
[3fde384f]363      }
[dbd68203]364   }
[d1b1380]365
[dbd68203]366   /* Multiply x by D inverse */
[5bb3dc4]367   for (int i = 0; i < n; i++) {
[dbd68203]368      B[i] /= M(i,i);
[3fde384f]369   }
370
371   /* Multiply x by (L transpose) inverse */
[5bb3dc4]372   for (int i = (int)(n - 1); i > 0; i--) {
373      for (int j = i - 1; j >= 0; j--) {
[421b7d2]374         B[j] -= M(i,j) * B[i];
[3fde384f]375      }
[dbd68203]376   }
[d1b1380]377
[dbd68203]378   /* printf("\n%ld/%ld\n\n",flops,flopsTot); */
[d1b1380]379}
380
381#ifdef SOR
382/* factor to use for SOR (must have 1 <= SOR_factor < 2) */
[702f518]383#define SOR_factor 1.93 /* 1.95 */
[d1b1380]384
385/* Solve MX=B for X by SOR of Gauss-Siedel */
386/* routine is entitled to scribble on M and B if it wishes */
[a420b49]387static void
[9965b2b]388sor(real *M, real *B, long n)
[a420b49]389{
[dbd68203]390   long it = 0;
[d1b1380]391
[ae917b96]392   real *X = osmalloc(n * sizeof(real));
[d1b1380]393
[5bb3dc4]394   const real threshold = 0.00001;
[d1b1380]395
[647407d]396   printf("reciprocating diagonal\n"); /* TRANSLATE */
[d1b1380]397
[3fde384f]398   /* munge diagonal so we can multiply rather than divide */
[5bb3dc4]399   for (int row = n - 1; row >= 0; row--) {
[dbd68203]400      M(row,row) = 1 / M(row,row);
[702f518]401      X[row] = 0;
[dbd68203]402   }
[d1b1380]403
[647407d]404   printf("starting iteration\n"); /* TRANSLATE */
[d1b1380]405
[5bb3dc4]406   real t;
[dbd68203]407   do {
408      /*printf("*");*/
409      it++;
410      t = 0.0;
[5bb3dc4]411      for (int row = 0; row < n; row++) {
412         real x = B[row];
413         int col;
[a420b49]414         for (col = 0; col < row; col++) x -= M(row,col) * X[col];
415         for (col++; col < n; col++) x -= M(col,row) * X[col];
[dbd68203]416         x *= M(row,row);
[3b8b342]417         real sor_delta = (x - X[row]) * SOR_factor;
418         X[row] += sor_delta;
419         real t2 = fabs(sor_delta);
[dbd68203]420         if (t2 > t) t = t2;
421      }
[3b8b342]422      printf("% 6ld: %8.6f\n", it, t);
[dbd68203]423   } while (t >= threshold && it < 100000);
[d1b1380]424
[dbd68203]425   if (t >= threshold) {
426      fprintf(stderr, "*not* converged after %ld iterations\n", it);
427      BUG("iteration stinks");
428   }
[d1b1380]429
[647407d]430   printf("%ld iterations\n", it); /* TRANSLATE */
[d1b1380]431
432#if 0
[dbd68203]433   putnl();
[5bb3dc4]434   for (int row = n - 1; row >= 0; row--) {
[dbd68203]435      t = 0.0;
[5bb3dc4]436      for (int col = 0; col < row; col++) t += M(row, col) * X[col];
[a420b49]437      t += X[row] / M(row, row);
438      for (col = row + 1; col < n; col++)
439         t += M(col, row) * X[col];
[b5d3988]440      printf("[ %f %f ]\n", t, B[row]);
[dbd68203]441   }
[d1b1380]442#endif
443
[5bb3dc4]444   for (int row = n - 1; row >= 0; row--) B[row] = X[row];
[d1b1380]445
[ae917b96]446   free(X);
[647407d]447   printf("\ndone\n"); /* TRANSLATE */
[dbd68203]448}
[d1b1380]449#endif
450
451#if PRINT_MATRICES
[a420b49]452static void
[9965b2b]453print_matrix(real *M, real *B, long n)
[a420b49]454{
[dbd68203]455   printf("Matrix, M and vector, B:\n");
[5bb3dc4]456   for (long row = 0; row < n; row++) {
457      long col;
[a420b49]458      for (col = 0; col <= row; col++) printf("%6.2f\t", M(row, col));
459      for (; col <= n; col++) printf(" \t");
[dbd68203]460      printf("\t%6.2f\n", B[row]);
461   }
462   putnl();
463   return;
[d1b1380]464}
465#endif
Note: See TracBrowser for help on using the repository browser.