source: git/src/matrix.c @ 3c7ab9a

stereo-2025
Last change on this file since 3c7ab9a was 3c7ab9a, checked in by Olly Betts <olly@…>, 12 months ago

Improve comment about how the matrix is built

  • Property mode set to 100644
File size: 12.7 KB
RevLine 
[421b7d2]1/* matrix.c
[d1b1380]2 * Matrix building and solving routines
[a4adf09]3 * Copyright (C) 1993-2003,2010,2013 Olly Betts
[846746e]4 *
[89231c4]5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
[846746e]9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
[89231c4]12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 * GNU General Public License for more details.
[846746e]14 *
[89231c4]15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
[ecbc6c18]17 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
[d1b1380]18 */
19
[2164fa4]20/*#define SOR 1*/
[702f518]21
[032ed06]22#if 0
23# define DEBUG_INVALID 1
24#endif
25
[4c83f84]26#include <config.h>
[d1b1380]27
28#include "debug.h"
[a420b49]29#include "cavern.h"
[c082b69]30#include "filename.h"
31#include "message.h"
[d1b1380]32#include "netbits.h"
33#include "matrix.h"
34#include "out.h"
35
36#undef PRINT_MATRICES
37#define PRINT_MATRICES 0
38
39#undef DEBUG_MATRIX_BUILD
40#define DEBUG_MATRIX_BUILD 0
41
42#undef DEBUG_MATRIX
43#define DEBUG_MATRIX 0
44
45#if PRINT_MATRICES
[9965b2b]46static void print_matrix(real *M, real *B, long n);
[d1b1380]47#endif
48
[9965b2b]49static void choleski(real *M, real *B, long n);
[3fde384f]50
[d1b1380]51#ifdef SOR
[9965b2b]52static void sor(real *M, real *B, long n);
[d1b1380]53#endif
54
[a420b49]55/* for M(row, col) col must be <= row, so Y <= X */
[9965b2b]56# define M(X, Y) ((real *)M)[((((OSSIZE_T)(X)) * ((X) + 1)) >> 1) + (Y)]
[421b7d2]57              /* +(Y>X?0*printf("row<col (line %d)\n",__LINE__):0) */
[9965b2b]58/*#define M_(X, Y) ((real *)M)[((((OSSIZE_T)(Y)) * ((Y) + 1)) >> 1) + (X)]*/
[d1b1380]59
[a420b49]60static int find_stn_in_tab(node *stn);
61static int add_stn_to_tab(node *stn);
[eb18f4d]62static void build_matrix(node *list);
[d1b1380]63
64static long n_stn_tab;
65
[c19f129]66static pos **stn_tab;
[d1b1380]67
[032ed06]68extern void
[d9b5db53]69solve_matrix(node *list)
[032ed06]70{
71   node *stn;
[702f518]72   long n = 0;
[d9b5db53]73   FOR_EACH_STN(stn, list) {
[032ed06]74      if (!fixed(stn)) n++;
75   }
76   if (n == 0) return;
77
78   /* we just need n to be a reasonable estimate >= the number
79    * of stations left after reduction. If memory is
80    * plentiful, we can be crass.
81    */
[66de220]82   stn_tab = osmalloc((OSSIZE_T)(n * ossizeof(pos*)));
[4f613e0]83   n_stn_tab = 0;
[cb3d1e2]84
[d9b5db53]85   FOR_EACH_STN(stn, list) {
[032ed06]86      if (!fixed(stn)) add_stn_to_tab(stn);
87   }
88
[66de220]89   if (n_stn_tab < n) {
90      /* release unused entries in stn_tab */
91      stn_tab = osrealloc(stn_tab, n_stn_tab * ossizeof(pos*));
92   }
[cb3d1e2]93
[eb18f4d]94   build_matrix(list);
[2c9c3ff]95#if DEBUG_MATRIX
[2164fa4]96   FOR_EACH_STN(stn, list) {
[2aa930f]97      printf("(%8.2f, %8.2f, %8.2f ) ", POS(stn, 0), POS(stn, 1), POS(stn, 2));
[2164fa4]98      print_prefix(stn->name);
[2aa930f]99      putnl();
[2164fa4]100   }
[2c9c3ff]101#endif
[4f613e0]102
103   osfree(stn_tab);
[032ed06]104}
[d1b1380]105
[3fde384f]106#ifdef NO_COVARIANCES
[702f518]107# define FACTOR 1
[3fde384f]108#else
[702f518]109# define FACTOR 3
[3fde384f]110#endif
111
[a420b49]112static void
[eb18f4d]113build_matrix(node *list)
[a420b49]114{
[9965b2b]115   real *M;
[dbd68203]116   real *B;
[702f518]117   int dim;
[dbd68203]118
[eb18f4d]119   if (n_stn_tab == 0) {
[5b68ae1]120      if (!fQuiet)
121         puts(msg(/*Network solved by reduction - no simultaneous equations to solve.*/74));
[dbd68203]122      return;
123   }
[eb18f4d]124   /* (OSSIZE_T) cast may be needed if n_stn_tab>=181 */
125   M = osmalloc((OSSIZE_T)((((OSSIZE_T)n_stn_tab * FACTOR * (n_stn_tab * FACTOR + 1)) >> 1)) * ossizeof(real));
126   B = osmalloc((OSSIZE_T)(n_stn_tab * FACTOR * ossizeof(real)));
[dbd68203]127
[647407d]128   if (!fQuiet) {
[a4adf09]129      if (n_stn_tab == 1)
130         out_current_action(msg(/*Solving one equation*/78));
131      else
132         out_current_action1(msg(/*Solving %d simultaneous equations*/75), n_stn_tab);
[dbd68203]133   }
134
[3fde384f]135#ifdef NO_COVARIANCES
136   dim = 2;
137#else
138   dim = 0; /* fudge next loop for now */
139#endif
[a420b49]140   for ( ; dim >= 0; dim--) {
[2164fa4]141      node *stn;
142      int row;
143
[907fe10]144      /* Initialise M and B to zero - zeroing "linearly" will minimise
[421b7d2]145       * paging when the matrix is large */
[66de220]146      {
147         int end = n_stn_tab * FACTOR;
148         for (row = 0; row < end; row++) B[row] = (real)0.0;
149         end = ((OSSIZE_T)n_stn_tab * FACTOR * (n_stn_tab * FACTOR + 1)) >> 1;
150         for (row = 0; row < end; row++) M[row] = (real)0.0;
151      }
[dbd68203]152
[3c7ab9a]153      /* Construct matrix by going through the stn list.
[421b7d2]154       *
[907fe10]155       * All legs between two fixed stations can be ignored here.
[421b7d2]156       *
[3c7ab9a]157       * Other legs we want to add exactly once to M.  To achieve this we
158       * wan to:
159       *
160       * - add forward legs between two unfixed stations,
161       *
162       * - add legs from unfixed stations to fixed stations (we do them from
163       *   the unfixed end so we don't need to detect when we're at a fixed
164       *   point cut line and determine which side we're currently dealing
165       *   with).
166       *
167       * To implement this, we only look at legs from unfixed stations and add
168       * a leg if to a fixed station, or to an unfixed station and it's a
169       * forward leg.
170       */
[d9b5db53]171      FOR_EACH_STN(stn, list) {
[2164fa4]172#ifdef NO_COVARIANCES
173         real e;
174#else
[dac18d8]175         svar e;
[eb18f4d]176         delta a;
[2164fa4]177#endif
[b5d3988]178         int f, t;
[dbd68203]179         int dirn;
[b5d3988]180#if DEBUG_MATRIX_BUILD
[dbd68203]181         print_prefix(stn->name);
[b5d3988]182         printf(" used: %d colour %ld\n",
[a420b49]183                (!!stn->leg[2]) << 2 | (!!stn -> leg[1]) << 1 | (!!stn->leg[0]),
[b5d3988]184                stn->colour);
[3fde384f]185
[907fe10]186         for (dirn = 0; dirn <= 2 && stn->leg[dirn]; dirn++) {
[b5d3988]187#ifdef NO_COVARIANCES
[907fe10]188            printf("Leg %d, vx=%f, reverse=%d, to ", dirn,
189                   stn->leg[dirn]->v[0], stn->leg[dirn]->l.reverse);
[b5d3988]190#else
[907fe10]191            printf("Leg %d, vx=%f, reverse=%d, to ", dirn,
192                   stn->leg[dirn]->v[0][0], stn->leg[dirn]->l.reverse);
[b5d3988]193#endif
[907fe10]194            print_prefix(stn->leg[dirn]->l.to->name);
195            putnl();
196         }
[dbd68203]197         putnl();
[d1b1380]198#endif /* DEBUG_MATRIX_BUILD */
[b5d3988]199
[907fe10]200         if (!fixed(stn)) {
[564f471]201            f = find_stn_in_tab(stn);
[907fe10]202            for (dirn = 0; dirn <= 2 && stn->leg[dirn]; dirn++) {
203               linkfor *leg = stn->leg[dirn];
204               node *to = leg->l.to;
205               if (fixed(to)) {
206                  bool fRev = !data_here(leg);
207                  if (fRev) leg = reverse_leg(leg);
208                  /* Ignore equated nodes */
[3fde384f]209#ifdef NO_COVARIANCES
[907fe10]210                  e = leg->v[dim];
211                  if (e != (real)0.0) {
212                     e = ((real)1.0) / e;
213                     M(f,f) += e;
[f52dcc7]214                     B[f] += e * POS(to, dim);
[907fe10]215                     if (fRev) {
[f52dcc7]216                        B[f] += leg->d[dim];
[907fe10]217                     } else {
[f52dcc7]218                        B[f] -= leg->d[dim];
[564f471]219                     }
[907fe10]220                  }
[3fde384f]221#else
[907fe10]222                  if (invert_svar(&e, &leg->v)) {
223                     delta b;
224                     int i;
225                     if (fRev) {
226                        adddd(&a, &POSD(to), &leg->d);
227                     } else {
228                        subdd(&a, &POSD(to), &leg->d);
229                     }
230                     mulsd(&b, &e, &a);
231                     for (i = 0; i < 3; i++) {
232                        M(f * FACTOR + i, f * FACTOR + i) += e[i];
233                        B[f * FACTOR + i] += b[i];
[564f471]234                     }
[907fe10]235                     M(f * FACTOR + 1, f * FACTOR) += e[3];
236                     M(f * FACTOR + 2, f * FACTOR) += e[4];
237                     M(f * FACTOR + 2, f * FACTOR + 1) += e[5];
238                  }
[3fde384f]239#endif
[907fe10]240               } else if (data_here(leg)) {
241                  /* forward leg, unfixed -> unfixed */
242                  t = find_stn_in_tab(to);
[d1b1380]243#if DEBUG_MATRIX
[907fe10]244                  printf("Leg %d to %d, var %f, delta %f\n", f, t, e,
245                         leg->d[dim]);
[d1b1380]246#endif
[907fe10]247                  /* Ignore equated nodes & lollipops */
[3fde384f]248#ifdef NO_COVARIANCES
[907fe10]249                  e = leg->v[dim];
250                  if (t != f && e != (real)0.0) {
251                     real a;
252                     e = ((real)1.0) / e;
253                     M(f,f) += e;
254                     M(t,t) += e;
255                     if (f < t) M(t,f) -= e; else M(f,t) -= e;
256                     a = e * leg->d[dim];
257                     B[f] -= a;
258                     B[t] += a;
259                  }
[3fde384f]260#else
[907fe10]261                  if (t != f && invert_svar(&e, &leg->v)) {
262                     int i;
263                     mulsd(&a, &e, &leg->d);
264                     for (i = 0; i < 3; i++) {
265                        M(f * FACTOR + i, f * FACTOR + i) += e[i];
266                        M(t * FACTOR + i, t * FACTOR + i) += e[i];
267                        if (f < t)
268                           M(t * FACTOR + i, f * FACTOR + i) -= e[i];
269                        else
270                           M(f * FACTOR + i, t * FACTOR + i) -= e[i];
271                        B[f * FACTOR + i] -= a[i];
272                        B[t * FACTOR + i] += a[i];
273                     }
274                     M(f * FACTOR + 1, f * FACTOR) += e[3];
275                     M(t * FACTOR + 1, t * FACTOR) += e[3];
276                     M(f * FACTOR + 2, f * FACTOR) += e[4];
277                     M(t * FACTOR + 2, t * FACTOR) += e[4];
278                     M(f * FACTOR + 2, f * FACTOR + 1) += e[5];
279                     M(t * FACTOR + 2, t * FACTOR + 1) += e[5];
280                     if (f < t) {
281                        M(t * FACTOR + 1, f * FACTOR) -= e[3];
282                        M(t * FACTOR, f * FACTOR + 1) -= e[3];
283                        M(t * FACTOR + 2, f * FACTOR) -= e[4];
284                        M(t * FACTOR, f * FACTOR + 2) -= e[4];
285                        M(t * FACTOR + 2, f * FACTOR + 1) -= e[5];
286                        M(t * FACTOR + 1, f * FACTOR + 2) -= e[5];
287                     } else {
288                        M(f * FACTOR + 1, t * FACTOR) -= e[3];
289                        M(f * FACTOR, t * FACTOR + 1) -= e[3];
290                        M(f * FACTOR + 2, t * FACTOR) -= e[4];
291                        M(f * FACTOR, t * FACTOR + 2) -= e[4];
292                        M(f * FACTOR + 2, t * FACTOR + 1) -= e[5];
293                        M(f * FACTOR + 1, t * FACTOR + 2) -= e[5];
[dbd68203]294                     }
295                  }
[907fe10]296#endif
[564f471]297               }
[907fe10]298            }
[dbd68203]299         }
[d1b1380]300      }
301
302#if PRINT_MATRICES
[eb18f4d]303      print_matrix(M, B, n_stn_tab * FACTOR); /* 'ave a look! */
[d1b1380]304#endif
305
306#ifdef SOR
[032ed06]307      /* defined in network.c, may be altered by -z<letters> on command line */
[a420b49]308      if (optimize & BITA('i'))
[eb18f4d]309         sor(M, B, n_stn_tab * FACTOR);
[dbd68203]310      else
[d1b1380]311#endif
[eb18f4d]312         choleski(M, B, n_stn_tab * FACTOR);
[d1b1380]313
[dbd68203]314      {
[a420b49]315         int m;
[eb18f4d]316         for (m = (int)(n_stn_tab - 1); m >= 0; m--) {
[3fde384f]317#ifdef NO_COVARIANCES
[c19f129]318            stn_tab[m]->p[dim] = B[m];
[032ed06]319            if (dim == 0) {
[4c07c51]320               SVX_ASSERT2(pos_fixed(stn_tab[m]),
[032ed06]321                       "setting station coordinates didn't mark pos as fixed");
322            }
[3fde384f]323#else
[702f518]324            int i;
325            for (i = 0; i < 3; i++) {
[c19f129]326               stn_tab[m]->p[i] = B[m * FACTOR + i];
[702f518]327            }
[4c07c51]328            SVX_ASSERT2(pos_fixed(stn_tab[m]),
[032ed06]329                    "setting station coordinates didn't mark pos as fixed");
[3fde384f]330#endif
[a420b49]331         }
[d1b1380]332#if EXPLICIT_FIXED_FLAG
[eb18f4d]333         for (m = n_stn_tab - 1; m >= 0; m--) fixpos(stn_tab[m]);
[d1b1380]334#endif
[dbd68203]335      }
336   }
337   osfree(B);
338   osfree(M);
[d1b1380]339}
340
[a420b49]341static int
342find_stn_in_tab(node *stn)
343{
[dbd68203]344   int i = 0;
[eb18f4d]345   pos *p = stn->name->pos;
346   while (stn_tab[i] != p)
[dbd68203]347      if (++i == n_stn_tab) {
[d1b1380]348#if DEBUG_INVALID
[a420b49]349         fputs("Station ", stderr);
[eb18f4d]350         fprint_prefix(stderr, stn->name);
351         fputs(" not in table\n\n", stderr);
[d1b1380]352#endif
353#if 0
[dbd68203]354         print_prefix(stn->name);
[b5d3988]355         printf(" used: %d colour %d\n",
[dbd68203]356                (!!stn->leg[2])<<2 | (!!stn->leg[1])<<1 | (!!stn->leg[0]),
[eb18f4d]357                stn->colour);
[d1b1380]358#endif
[a420b49]359         fatalerror(/*Bug in program detected! Please report this to the authors*/11);
[dbd68203]360      }
361   return i;
[d1b1380]362}
363
[a420b49]364static int
365add_stn_to_tab(node *stn)
366{
[dbd68203]367   int i;
[eb18f4d]368   pos *p = stn->name->pos;
[a420b49]369   for (i = 0; i < n_stn_tab; i++) {
[eb18f4d]370      if (stn_tab[i] == p) return i;
[dbd68203]371   }
[eb18f4d]372   stn_tab[n_stn_tab++] = p;
[dbd68203]373   return i;
[d1b1380]374}
375
[702f518]376/* Solve MX=B for X by Choleski factorisation - modified Choleski actually
377 * since we factor into LDL' while Choleski is just LL'
378 */
[d1b1380]379/* Note M must be symmetric positive definite */
380/* routine is entitled to scribble on M and B if it wishes */
[a420b49]381static void
[9965b2b]382choleski(real *M, real *B, long n)
[a420b49]383{
[dbd68203]384   int i, j, k;
[d1b1380]385
[a420b49]386   for (j = 1; j < n; j++) {
[3fde384f]387      real V;
[a420b49]388      for (i = 0; i < j; i++) {
[421b7d2]389         V = (real)0.0;
[a420b49]390         for (k = 0; k < i; k++) V += M(i,k) * M(j,k) * M(k,k);
391         M(j,i) = (M(j,i) - V) / M(i,i);
[dbd68203]392      }
393      V = (real)0.0;
[a420b49]394      for (k = 0; k < j; k++) V += M(j,k) * M(j,k) * M(k,k);
[3fde384f]395      M(j,j) -= V; /* may be best to add M() last for numerical reasons too */
[dbd68203]396   }
[d1b1380]397
[dbd68203]398   /* Multiply x by L inverse */
[a420b49]399   for (i = 0; i < n - 1; i++) {
400      for (j = i + 1; j < n; j++) {
[dbd68203]401         B[j] -= M(j,i) * B[i];
[3fde384f]402      }
[dbd68203]403   }
[d1b1380]404
[dbd68203]405   /* Multiply x by D inverse */
[a420b49]406   for (i = 0; i < n; i++) {
[dbd68203]407      B[i] /= M(i,i);
[3fde384f]408   }
409
410   /* Multiply x by (L transpose) inverse */
[9f5d1675]411   for (i = (int)(n - 1); i > 0; i--) {
[a420b49]412      for (j = i - 1; j >= 0; j--) {
[421b7d2]413         B[j] -= M(i,j) * B[i];
[3fde384f]414      }
[dbd68203]415   }
[d1b1380]416
[dbd68203]417   /* printf("\n%ld/%ld\n\n",flops,flopsTot); */
[d1b1380]418}
419
420#ifdef SOR
421/* factor to use for SOR (must have 1 <= SOR_factor < 2) */
[702f518]422#define SOR_factor 1.93 /* 1.95 */
[d1b1380]423
424/* Solve MX=B for X by SOR of Gauss-Siedel */
425/* routine is entitled to scribble on M and B if it wishes */
[a420b49]426static void
[9965b2b]427sor(real *M, real *B, long n)
[a420b49]428{
[dbd68203]429   real t, x, delta, threshold, t2;
430   int row, col;
431   real *X;
432   long it = 0;
[d1b1380]433
[a420b49]434   X = osmalloc(n * ossizeof(real));
[d1b1380]435
[dbd68203]436   threshold = 0.00001;
[d1b1380]437
[647407d]438   printf("reciprocating diagonal\n"); /* TRANSLATE */
[d1b1380]439
[3fde384f]440   /* munge diagonal so we can multiply rather than divide */
[a420b49]441   for (row = n - 1; row >= 0; row--) {
[dbd68203]442      M(row,row) = 1 / M(row,row);
[702f518]443      X[row] = 0;
[dbd68203]444   }
[d1b1380]445
[647407d]446   printf("starting iteration\n"); /* TRANSLATE */
[d1b1380]447
[dbd68203]448   do {
449      /*printf("*");*/
450      it++;
451      t = 0.0;
[a420b49]452      for (row = 0; row < n; row++) {
[dbd68203]453         x = B[row];
[a420b49]454         for (col = 0; col < row; col++) x -= M(row,col) * X[col];
455         for (col++; col < n; col++) x -= M(col,row) * X[col];
[dbd68203]456         x *= M(row,row);
457         delta = (x - X[row]) * SOR_factor;
458         X[row] += delta;
459         t2 = fabs(delta);
460         if (t2 > t) t = t2;
461      }
[702f518]462      printf("% 6d: %8.6f\n", it, t);
[dbd68203]463   } while (t >= threshold && it < 100000);
[d1b1380]464
[dbd68203]465   if (t >= threshold) {
466      fprintf(stderr, "*not* converged after %ld iterations\n", it);
467      BUG("iteration stinks");
468   }
[d1b1380]469
[647407d]470   printf("%ld iterations\n", it); /* TRANSLATE */
[d1b1380]471
472#if 0
[dbd68203]473   putnl();
[a420b49]474   for (row = n - 1; row >= 0; row--) {
[dbd68203]475      t = 0.0;
[a420b49]476      for (col = 0; col < row; col++) t += M(row, col) * X[col];
477      t += X[row] / M(row, row);
478      for (col = row + 1; col < n; col++)
479         t += M(col, row) * X[col];
[b5d3988]480      printf("[ %f %f ]\n", t, B[row]);
[dbd68203]481   }
[d1b1380]482#endif
483
[a420b49]484   for (row = n - 1; row >= 0; row--) B[row] = X[row];
[d1b1380]485
[dbd68203]486   osfree(X);
[647407d]487   printf("\ndone\n"); /* TRANSLATE */
[dbd68203]488}
[d1b1380]489#endif
490
491#if PRINT_MATRICES
[a420b49]492static void
[9965b2b]493print_matrix(real *M, real *B, long n)
[a420b49]494{
[702f518]495   long row, col;
[dbd68203]496   printf("Matrix, M and vector, B:\n");
[a420b49]497   for (row = 0; row < n; row++) {
498      for (col = 0; col <= row; col++) printf("%6.2f\t", M(row, col));
499      for (; col <= n; col++) printf(" \t");
[dbd68203]500      printf("\t%6.2f\n", B[row]);
501   }
502   putnl();
503   return;
[d1b1380]504}
505#endif
Note: See TracBrowser for help on using the repository browser.