source: git/src/matrix.c @ 1339de3

stereo-2025
Last change on this file since 1339de3 was 9814fb7, checked in by Olly Betts <olly@…>, 9 months ago

Simplify setting row numbers

Check the ->name->pos pointers match rather than checking the legs
are equates, which is slightly simpler and slightly more efficient.

  • Property mode set to 100644
File size: 12.2 KB
RevLine 
[421b7d2]1/* matrix.c
[d1b1380]2 * Matrix building and solving routines
[2d8d46d]3 * Copyright (C) 1993-2003,2010,2013,2024 Olly Betts
[846746e]4 *
[89231c4]5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
[846746e]9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
[89231c4]12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 * GNU General Public License for more details.
[846746e]14 *
[89231c4]15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
[ecbc6c18]17 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
[d1b1380]18 */
19
[2164fa4]20/*#define SOR 1*/
[702f518]21
[032ed06]22#if 0
23# define DEBUG_INVALID 1
24#endif
25
[4c83f84]26#include <config.h>
[d1b1380]27
28#include "debug.h"
[a420b49]29#include "cavern.h"
[c082b69]30#include "filename.h"
31#include "message.h"
[d1b1380]32#include "netbits.h"
33#include "matrix.h"
34#include "out.h"
35
36#undef PRINT_MATRICES
37#define PRINT_MATRICES 0
38
39#undef DEBUG_MATRIX_BUILD
40#define DEBUG_MATRIX_BUILD 0
41
42#undef DEBUG_MATRIX
43#define DEBUG_MATRIX 0
44
45#if PRINT_MATRICES
[9965b2b]46static void print_matrix(real *M, real *B, long n);
[d1b1380]47#endif
48
[9965b2b]49static void choleski(real *M, real *B, long n);
[3fde384f]50
[d1b1380]51#ifdef SOR
[9965b2b]52static void sor(real *M, real *B, long n);
[d1b1380]53#endif
54
[a420b49]55/* for M(row, col) col must be <= row, so Y <= X */
[9965b2b]56# define M(X, Y) ((real *)M)[((((OSSIZE_T)(X)) * ((X) + 1)) >> 1) + (Y)]
[421b7d2]57              /* +(Y>X?0*printf("row<col (line %d)\n",__LINE__):0) */
[9965b2b]58/*#define M_(X, Y) ((real *)M)[((((OSSIZE_T)(Y)) * ((Y) + 1)) >> 1) + (X)]*/
[d1b1380]59
[2d8d46d]60#define COLOUR_FIXED -1
61#define COLOUR_TODO -2
[d1b1380]62
[9814fb7]63static void set_row(node *stn, int row_number) {
[2d8d46d]64    // We store the matrix row/column index in stn->colour for quick and easy
65    // lookup when copying out the solved station coordinates.
66    stn->colour = row_number;
67    for (int d = 0; d < 3; d++) {
68        linkfor *leg = stn->leg[d];
69        if (!leg) break;
70        node *to = leg->l.to;
[9814fb7]71        if (to->colour == COLOUR_TODO && stn->name->pos == to->name->pos) {
72            set_row(to, row_number);
[2d8d46d]73        }
74    }
75}
[d1b1380]76
[2d8d46d]77#ifdef NO_COVARIANCES
78# define FACTOR 1
79#else
80# define FACTOR 3
81#endif
[d1b1380]82
[032ed06]83extern void
[d9b5db53]84solve_matrix(node *list)
[032ed06]85{
86   node *stn;
[2d8d46d]87   bool unfixed_stations = false;
[d9b5db53]88   FOR_EACH_STN(stn, list) {
[103c026]89      if (!fixed(stn)) {
[2d8d46d]90          unfixed_stations = true;
91          stn->colour = COLOUR_TODO;
[103c026]92      } else {
[2d8d46d]93          stn->colour = COLOUR_FIXED;
[103c026]94      }
[032ed06]95   }
[2d8d46d]96   if (!unfixed_stations) {
97       return;
98   }
[032ed06]99
[2d8d46d]100   // Assign a matrix row/column index to each group of stations with the same
101   // pos.
102   long n = 0;
[2164fa4]103   FOR_EACH_STN(stn, list) {
[2d8d46d]104      if (stn->colour == COLOUR_TODO) {
[9814fb7]105          set_row(stn, n++);
[2d8d46d]106      }
[2164fa4]107   }
[2d8d46d]108   SVX_ASSERT(n > 0);
[d1b1380]109
[2d8d46d]110   // Array to map from row/column index to pos.  We fill this in as we build
111   // the matrix, and use it to know where to copy the solved station
112   // coordinates to.
113   pos **stn_tab = osmalloc((OSSIZE_T)(n * ossizeof(pos*)));
[3fde384f]114
[2d8d46d]115   /* (OSSIZE_T) cast may be needed if n >= 181 */
116   real *M = osmalloc((OSSIZE_T)((((OSSIZE_T)n * FACTOR * (n * FACTOR + 1)) >> 1)) * ossizeof(real));
117   real *B = osmalloc((OSSIZE_T)(n * FACTOR * ossizeof(real)));
[dbd68203]118
[647407d]119   if (!fQuiet) {
[2d8d46d]120      if (n == 1)
[a4adf09]121         out_current_action(msg(/*Solving one equation*/78));
122      else
[2d8d46d]123         out_current_action1(msg(/*Solving %d simultaneous equations*/75), n);
[dbd68203]124   }
125
[3fde384f]126#ifdef NO_COVARIANCES
[5bb3dc4]127   int dim = 2;
[3fde384f]128#else
[2d8d46d]129   int dim = 0; /* Collapse loop to a single iteration. */
[3fde384f]130#endif
[a420b49]131   for ( ; dim >= 0; dim--) {
[907fe10]132      /* Initialise M and B to zero - zeroing "linearly" will minimise
[421b7d2]133       * paging when the matrix is large */
[66de220]134      {
[2d8d46d]135         int end = n * FACTOR;
136         for (int row = 0; row < end; row++) B[row] = (real)0.0;
137         end = ((OSSIZE_T)n * FACTOR * (n * FACTOR + 1)) >> 1;
138         for (int row = 0; row < end; row++) M[row] = (real)0.0;
[66de220]139      }
[dbd68203]140
[3c7ab9a]141      /* Construct matrix by going through the stn list.
[421b7d2]142       *
[907fe10]143       * All legs between two fixed stations can be ignored here.
[421b7d2]144       *
[3c7ab9a]145       * Other legs we want to add exactly once to M.  To achieve this we
[07ff034]146       * want to:
[3c7ab9a]147       *
148       * - add forward legs between two unfixed stations,
149       *
150       * - add legs from unfixed stations to fixed stations (we do them from
151       *   the unfixed end so we don't need to detect when we're at a fixed
152       *   point cut line and determine which side we're currently dealing
153       *   with).
154       *
155       * To implement this, we only look at legs from unfixed stations and add
156       * a leg if to a fixed station, or to an unfixed station and it's a
157       * forward leg.
158       */
[d9b5db53]159      FOR_EACH_STN(stn, list) {
[2d8d46d]160         if (dim == 0) {
161             if (stn->colour != COLOUR_FIXED) {
162                 stn_tab[stn->colour] = stn->name->pos;
163             }
164         }
165
[2164fa4]166#ifdef NO_COVARIANCES
167         real e;
168#else
[dac18d8]169         svar e;
[eb18f4d]170         delta a;
[2164fa4]171#endif
[b5d3988]172#if DEBUG_MATRIX_BUILD
[dbd68203]173         print_prefix(stn->name);
[b5d3988]174         printf(" used: %d colour %ld\n",
[a420b49]175                (!!stn->leg[2]) << 2 | (!!stn -> leg[1]) << 1 | (!!stn->leg[0]),
[b5d3988]176                stn->colour);
[3fde384f]177
[5bb3dc4]178         for (int dirn = 0; dirn <= 2 && stn->leg[dirn]; dirn++) {
[907fe10]179            printf("Leg %d, vx=%f, reverse=%d, to ", dirn,
180                   stn->leg[dirn]->v[0], stn->leg[dirn]->l.reverse);
181            print_prefix(stn->leg[dirn]->l.to->name);
182            putnl();
183         }
[dbd68203]184         putnl();
[d1b1380]185#endif /* DEBUG_MATRIX_BUILD */
[b5d3988]186
[2d8d46d]187         int f = stn->colour;
188         if (f != COLOUR_FIXED) {
[5bb3dc4]189            for (int dirn = 0; dirn <= 2 && stn->leg[dirn]; dirn++) {
[907fe10]190               linkfor *leg = stn->leg[dirn];
191               node *to = leg->l.to;
[2d8d46d]192               int t = to->colour;
193               if (t == COLOUR_FIXED) {
[907fe10]194                  bool fRev = !data_here(leg);
195                  if (fRev) leg = reverse_leg(leg);
196                  /* Ignore equated nodes */
[3fde384f]197#ifdef NO_COVARIANCES
[907fe10]198                  e = leg->v[dim];
199                  if (e != (real)0.0) {
200                     e = ((real)1.0) / e;
201                     M(f,f) += e;
[f52dcc7]202                     B[f] += e * POS(to, dim);
[907fe10]203                     if (fRev) {
[f52dcc7]204                        B[f] += leg->d[dim];
[907fe10]205                     } else {
[f52dcc7]206                        B[f] -= leg->d[dim];
[564f471]207                     }
[907fe10]208                  }
[3fde384f]209#else
[907fe10]210                  if (invert_svar(&e, &leg->v)) {
211                     if (fRev) {
212                        adddd(&a, &POSD(to), &leg->d);
213                     } else {
214                        subdd(&a, &POSD(to), &leg->d);
215                     }
[5bb3dc4]216                     delta b;
[907fe10]217                     mulsd(&b, &e, &a);
[5bb3dc4]218                     for (int i = 0; i < 3; i++) {
[907fe10]219                        M(f * FACTOR + i, f * FACTOR + i) += e[i];
220                        B[f * FACTOR + i] += b[i];
[564f471]221                     }
[907fe10]222                     M(f * FACTOR + 1, f * FACTOR) += e[3];
223                     M(f * FACTOR + 2, f * FACTOR) += e[4];
224                     M(f * FACTOR + 2, f * FACTOR + 1) += e[5];
225                  }
[3fde384f]226#endif
[907fe10]227               } else if (data_here(leg)) {
228                  /* forward leg, unfixed -> unfixed */
[d1b1380]229#if DEBUG_MATRIX
[16a78e0]230# ifdef NO_COVARIANCES
[907fe10]231                  printf("Leg %d to %d, var %f, delta %f\n", f, t, e,
232                         leg->d[dim]);
[16a78e0]233# else
234                  printf("Leg %d to %d, var (%f, %f, %f; %f, %f, %f), "
235                         "delta %f\n", f, t, e[0], e[1], e[2], e[3], e[4], e[5],
236                         leg->d[dim]);
237# endif
[d1b1380]238#endif
[907fe10]239                  /* Ignore equated nodes & lollipops */
[3fde384f]240#ifdef NO_COVARIANCES
[907fe10]241                  e = leg->v[dim];
242                  if (t != f && e != (real)0.0) {
243                     e = ((real)1.0) / e;
244                     M(f,f) += e;
245                     M(t,t) += e;
246                     if (f < t) M(t,f) -= e; else M(f,t) -= e;
[5bb3dc4]247                     real a = e * leg->d[dim];
[907fe10]248                     B[f] -= a;
249                     B[t] += a;
250                  }
[3fde384f]251#else
[907fe10]252                  if (t != f && invert_svar(&e, &leg->v)) {
253                     mulsd(&a, &e, &leg->d);
[5bb3dc4]254                     for (int i = 0; i < 3; i++) {
[907fe10]255                        M(f * FACTOR + i, f * FACTOR + i) += e[i];
256                        M(t * FACTOR + i, t * FACTOR + i) += e[i];
257                        if (f < t)
258                           M(t * FACTOR + i, f * FACTOR + i) -= e[i];
259                        else
260                           M(f * FACTOR + i, t * FACTOR + i) -= e[i];
261                        B[f * FACTOR + i] -= a[i];
262                        B[t * FACTOR + i] += a[i];
263                     }
264                     M(f * FACTOR + 1, f * FACTOR) += e[3];
265                     M(t * FACTOR + 1, t * FACTOR) += e[3];
266                     M(f * FACTOR + 2, f * FACTOR) += e[4];
267                     M(t * FACTOR + 2, t * FACTOR) += e[4];
268                     M(f * FACTOR + 2, f * FACTOR + 1) += e[5];
269                     M(t * FACTOR + 2, t * FACTOR + 1) += e[5];
270                     if (f < t) {
271                        M(t * FACTOR + 1, f * FACTOR) -= e[3];
272                        M(t * FACTOR, f * FACTOR + 1) -= e[3];
273                        M(t * FACTOR + 2, f * FACTOR) -= e[4];
274                        M(t * FACTOR, f * FACTOR + 2) -= e[4];
275                        M(t * FACTOR + 2, f * FACTOR + 1) -= e[5];
276                        M(t * FACTOR + 1, f * FACTOR + 2) -= e[5];
277                     } else {
278                        M(f * FACTOR + 1, t * FACTOR) -= e[3];
279                        M(f * FACTOR, t * FACTOR + 1) -= e[3];
280                        M(f * FACTOR + 2, t * FACTOR) -= e[4];
281                        M(f * FACTOR, t * FACTOR + 2) -= e[4];
282                        M(f * FACTOR + 2, t * FACTOR + 1) -= e[5];
283                        M(f * FACTOR + 1, t * FACTOR + 2) -= e[5];
[dbd68203]284                     }
285                  }
[907fe10]286#endif
[564f471]287               }
[907fe10]288            }
[dbd68203]289         }
[d1b1380]290      }
291
292#if PRINT_MATRICES
[2d8d46d]293      print_matrix(M, B, n * FACTOR); /* 'ave a look! */
[d1b1380]294#endif
295
296#ifdef SOR
[032ed06]297      /* defined in network.c, may be altered by -z<letters> on command line */
[a420b49]298      if (optimize & BITA('i'))
[2d8d46d]299         sor(M, B, n * FACTOR);
[dbd68203]300      else
[d1b1380]301#endif
[2d8d46d]302         choleski(M, B, n * FACTOR);
[d1b1380]303
[dbd68203]304      {
[2d8d46d]305         for (int m = (int)(n - 1); m >= 0; m--) {
[3fde384f]306#ifdef NO_COVARIANCES
[c19f129]307            stn_tab[m]->p[dim] = B[m];
[032ed06]308            if (dim == 0) {
[4c07c51]309               SVX_ASSERT2(pos_fixed(stn_tab[m]),
[032ed06]310                       "setting station coordinates didn't mark pos as fixed");
311            }
[3fde384f]312#else
[5bb3dc4]313            for (int i = 0; i < 3; i++) {
[c19f129]314               stn_tab[m]->p[i] = B[m * FACTOR + i];
[702f518]315            }
[4c07c51]316            SVX_ASSERT2(pos_fixed(stn_tab[m]),
[032ed06]317                    "setting station coordinates didn't mark pos as fixed");
[d1b1380]318#endif
[4a59b4f]319         }
[dbd68203]320      }
321   }
322   osfree(B);
323   osfree(M);
[2d8d46d]324   osfree(stn_tab);
325
326#if DEBUG_MATRIX
327   FOR_EACH_STN(stn, list) {
328      printf("(%8.2f, %8.2f, %8.2f ) ", POS(stn, 0), POS(stn, 1), POS(stn, 2));
329      print_prefix(stn->name);
330      putnl();
331   }
332#endif
[d1b1380]333}
334
[702f518]335/* Solve MX=B for X by Choleski factorisation - modified Choleski actually
336 * since we factor into LDL' while Choleski is just LL'
337 */
[d1b1380]338/* Note M must be symmetric positive definite */
339/* routine is entitled to scribble on M and B if it wishes */
[a420b49]340static void
[9965b2b]341choleski(real *M, real *B, long n)
[a420b49]342{
[5bb3dc4]343   for (int j = 1; j < n; j++) {
[3fde384f]344      real V;
[5bb3dc4]345      for (int i = 0; i < j; i++) {
[421b7d2]346         V = (real)0.0;
[5bb3dc4]347         for (int k = 0; k < i; k++) V += M(i,k) * M(j,k) * M(k,k);
[a420b49]348         M(j,i) = (M(j,i) - V) / M(i,i);
[dbd68203]349      }
350      V = (real)0.0;
[5bb3dc4]351      for (int k = 0; k < j; k++) V += M(j,k) * M(j,k) * M(k,k);
[3fde384f]352      M(j,j) -= V; /* may be best to add M() last for numerical reasons too */
[dbd68203]353   }
[d1b1380]354
[dbd68203]355   /* Multiply x by L inverse */
[5bb3dc4]356   for (int i = 0; i < n - 1; i++) {
357      for (int j = i + 1; j < n; j++) {
[dbd68203]358         B[j] -= M(j,i) * B[i];
[3fde384f]359      }
[dbd68203]360   }
[d1b1380]361
[dbd68203]362   /* Multiply x by D inverse */
[5bb3dc4]363   for (int i = 0; i < n; i++) {
[dbd68203]364      B[i] /= M(i,i);
[3fde384f]365   }
366
367   /* Multiply x by (L transpose) inverse */
[5bb3dc4]368   for (int i = (int)(n - 1); i > 0; i--) {
369      for (int j = i - 1; j >= 0; j--) {
[421b7d2]370         B[j] -= M(i,j) * B[i];
[3fde384f]371      }
[dbd68203]372   }
[d1b1380]373
[dbd68203]374   /* printf("\n%ld/%ld\n\n",flops,flopsTot); */
[d1b1380]375}
376
377#ifdef SOR
378/* factor to use for SOR (must have 1 <= SOR_factor < 2) */
[702f518]379#define SOR_factor 1.93 /* 1.95 */
[d1b1380]380
381/* Solve MX=B for X by SOR of Gauss-Siedel */
382/* routine is entitled to scribble on M and B if it wishes */
[a420b49]383static void
[9965b2b]384sor(real *M, real *B, long n)
[a420b49]385{
[dbd68203]386   long it = 0;
[d1b1380]387
[5bb3dc4]388   real *X = osmalloc(n * ossizeof(real));
[d1b1380]389
[5bb3dc4]390   const real threshold = 0.00001;
[d1b1380]391
[647407d]392   printf("reciprocating diagonal\n"); /* TRANSLATE */
[d1b1380]393
[3fde384f]394   /* munge diagonal so we can multiply rather than divide */
[5bb3dc4]395   for (int row = n - 1; row >= 0; row--) {
[dbd68203]396      M(row,row) = 1 / M(row,row);
[702f518]397      X[row] = 0;
[dbd68203]398   }
[d1b1380]399
[647407d]400   printf("starting iteration\n"); /* TRANSLATE */
[d1b1380]401
[5bb3dc4]402   real t;
[dbd68203]403   do {
404      /*printf("*");*/
405      it++;
406      t = 0.0;
[5bb3dc4]407      for (int row = 0; row < n; row++) {
408         real x = B[row];
409         int col;
[a420b49]410         for (col = 0; col < row; col++) x -= M(row,col) * X[col];
411         for (col++; col < n; col++) x -= M(col,row) * X[col];
[dbd68203]412         x *= M(row,row);
[3b8b342]413         real sor_delta = (x - X[row]) * SOR_factor;
414         X[row] += sor_delta;
415         real t2 = fabs(sor_delta);
[dbd68203]416         if (t2 > t) t = t2;
417      }
[3b8b342]418      printf("% 6ld: %8.6f\n", it, t);
[dbd68203]419   } while (t >= threshold && it < 100000);
[d1b1380]420
[dbd68203]421   if (t >= threshold) {
422      fprintf(stderr, "*not* converged after %ld iterations\n", it);
423      BUG("iteration stinks");
424   }
[d1b1380]425
[647407d]426   printf("%ld iterations\n", it); /* TRANSLATE */
[d1b1380]427
428#if 0
[dbd68203]429   putnl();
[5bb3dc4]430   for (int row = n - 1; row >= 0; row--) {
[dbd68203]431      t = 0.0;
[5bb3dc4]432      for (int col = 0; col < row; col++) t += M(row, col) * X[col];
[a420b49]433      t += X[row] / M(row, row);
434      for (col = row + 1; col < n; col++)
435         t += M(col, row) * X[col];
[b5d3988]436      printf("[ %f %f ]\n", t, B[row]);
[dbd68203]437   }
[d1b1380]438#endif
439
[5bb3dc4]440   for (int row = n - 1; row >= 0; row--) B[row] = X[row];
[d1b1380]441
[dbd68203]442   osfree(X);
[647407d]443   printf("\ndone\n"); /* TRANSLATE */
[dbd68203]444}
[d1b1380]445#endif
446
447#if PRINT_MATRICES
[a420b49]448static void
[9965b2b]449print_matrix(real *M, real *B, long n)
[a420b49]450{
[dbd68203]451   printf("Matrix, M and vector, B:\n");
[5bb3dc4]452   for (long row = 0; row < n; row++) {
453      long col;
[a420b49]454      for (col = 0; col <= row; col++) printf("%6.2f\t", M(row, col));
455      for (; col <= n; col++) printf(" \t");
[dbd68203]456      printf("\t%6.2f\n", B[row]);
457   }
458   putnl();
459   return;
[d1b1380]460}
461#endif
Note: See TracBrowser for help on using the repository browser.