/* matrix.c * Matrix building and solving routines * Copyright (C) 1993-2003,2010,2013,2024 Olly Betts * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ /*#define SOR 1*/ #if 0 # define DEBUG_INVALID 1 #endif #include #include "debug.h" #include "cavern.h" #include "filename.h" #include "message.h" #include "netbits.h" #include "matrix.h" #include "osalloc.h" #include "out.h" #undef PRINT_MATRICES #define PRINT_MATRICES 0 #undef DEBUG_MATRIX_BUILD #define DEBUG_MATRIX_BUILD 0 #undef DEBUG_MATRIX #define DEBUG_MATRIX 0 #if PRINT_MATRICES static void print_matrix(real *M, real *B, long n); #endif static void choleski(real *M, real *B, long n); #ifdef SOR static void sor(real *M, real *B, long n); #endif /* for M(row, col) col must be <= row, so Y <= X */ # define M(X, Y) ((real *)M)[((((size_t)(X)) * ((X) + 1)) >> 1) + (Y)] /* +(Y>X?0*printf("row> 1) + (X)]*/ static void set_row(node *stn, int row_number) { // We store the matrix row/column index in stn->colour for quick and easy // lookup when copying out the solved station coordinates. stn->colour = row_number; for (int d = 0; d < 3; d++) { linkfor *leg = stn->leg[d]; if (!leg) break; node *to = leg->l.to; if (to->colour < 0 && stn->name->pos == to->name->pos) { set_row(to, row_number); } } } #ifdef NO_COVARIANCES # define FACTOR 1 #else # define FACTOR 3 #endif /* Find positions for a subset of the reduced network by solving a matrix * equation. * * list is a non-empty linked list of unfixed stations to solve for. * * As a pre-condition, all stations in list must have a negative value for * stn->colour. This can be ensured by the caller (which avoids having to * make an extra pass over the list just to set the colours suitably). */ extern void solve_matrix(node *list) { // Assign a matrix row/column index to each group of stations with the same // pos. // // We also set listend to the last station in the list while doing so, which // we use after solving to splice list into fixedlist. node *listend = NULL; size_t n = 0; for (node *stn = list; stn; stn = stn->next) { listend = stn; if (stn->colour < 0) { set_row(stn, n++); } } SVX_ASSERT(n > 0); // Array to map from row/column index to pos. We fill this in as we build // the matrix, and use it to know where to copy the solved station // coordinates to. pos **stn_tab = osmalloc(n * sizeof(pos*)); real *M = osmalloc((((n * FACTOR * (n * FACTOR + 1)) >> 1)) * sizeof(real)); real *B = osmalloc(n * FACTOR * sizeof(real)); if (!fQuiet) { if (n == 1) out_current_action(msg(/*Solving one equation*/78)); else out_current_action1(msg(/*Solving %d simultaneous equations*/75), (int)n); } #ifdef NO_COVARIANCES int dim = 2; #else int dim = 0; /* Collapse loop to a single iteration. */ #endif for ( ; dim >= 0; dim--) { /* Initialise M and B to zero - zeroing "linearly" will minimise * paging when the matrix is large */ { int end = n * FACTOR; for (int row = 0; row < end; row++) B[row] = (real)0.0; end = ((size_t)n * FACTOR * (n * FACTOR + 1)) >> 1; for (int row = 0; row < end; row++) M[row] = (real)0.0; } /* Construct matrix by going through the stn list. * * All legs between two fixed stations can be ignored here. * * Other legs we want to add exactly once to M. To achieve this we * want to: * * - add forward legs between two unfixed stations, * * - add legs from unfixed stations to fixed stations (we do them from * the unfixed end so we don't need to detect when we're at a fixed * point cut line and determine which side we're currently dealing * with). * * To implement this, we only look at legs from unfixed stations and add * a leg if to a fixed station, or to an unfixed station and it's a * forward leg. */ for (node *stn = list; stn; stn = stn->next) { if (dim == 0) { stn_tab[stn->colour] = stn->name->pos; } #ifdef NO_COVARIANCES real e; #else svar e; delta a; #endif #if DEBUG_MATRIX_BUILD print_prefix(stn->name); printf(" used: %d colour %ld\n", (!!stn->leg[2]) << 2 | (!!stn -> leg[1]) << 1 | (!!stn->leg[0]), stn->colour); for (int dirn = 0; dirn <= 2 && stn->leg[dirn]; dirn++) { printf("Leg %d, vx=%f, reverse=%d, to ", dirn, stn->leg[dirn]->v[0], stn->leg[dirn]->l.reverse); print_prefix(stn->leg[dirn]->l.to->name); putnl(); } putnl(); #endif /* DEBUG_MATRIX_BUILD */ int f = stn->colour; SVX_ASSERT(f >= 0); { for (int dirn = 0; dirn <= 2 && stn->leg[dirn]; dirn++) { linkfor *leg = stn->leg[dirn]; node *to = leg->l.to; if (fixed(to)) { bool fRev = !data_here(leg); if (fRev) leg = reverse_leg(leg); /* Ignore equated nodes */ #ifdef NO_COVARIANCES e = leg->v[dim]; if (e != (real)0.0) { e = ((real)1.0) / e; M(f,f) += e; B[f] += e * POS(to, dim); if (fRev) { B[f] += leg->d[dim]; } else { B[f] -= leg->d[dim]; } } #else if (invert_svar(&e, &leg->v)) { if (fRev) { adddd(&a, &POSD(to), &leg->d); } else { subdd(&a, &POSD(to), &leg->d); } delta b; mulsd(&b, &e, &a); for (int i = 0; i < 3; i++) { M(f * FACTOR + i, f * FACTOR + i) += e[i]; B[f * FACTOR + i] += b[i]; } M(f * FACTOR + 1, f * FACTOR) += e[3]; M(f * FACTOR + 2, f * FACTOR) += e[4]; M(f * FACTOR + 2, f * FACTOR + 1) += e[5]; } #endif } else if (data_here(leg) && (leg->l.reverse & FLAG_ARTICULATION) == 0) { /* forward leg, unfixed -> unfixed */ int t = to->colour; SVX_ASSERT(t >= 0); #if DEBUG_MATRIX # ifdef NO_COVARIANCES printf("Leg %d to %d, var %f, delta %f\n", f, t, e, leg->d[dim]); # else printf("Leg %d to %d, var (%f, %f, %f; %f, %f, %f), " "delta %f\n", f, t, e[0], e[1], e[2], e[3], e[4], e[5], leg->d[dim]); # endif #endif /* Ignore equated nodes & lollipops */ #ifdef NO_COVARIANCES e = leg->v[dim]; if (t != f && e != (real)0.0) { e = ((real)1.0) / e; M(f,f) += e; M(t,t) += e; if (f < t) M(t,f) -= e; else M(f,t) -= e; real a = e * leg->d[dim]; B[f] -= a; B[t] += a; } #else if (t != f && invert_svar(&e, &leg->v)) { mulsd(&a, &e, &leg->d); for (int i = 0; i < 3; i++) { M(f * FACTOR + i, f * FACTOR + i) += e[i]; M(t * FACTOR + i, t * FACTOR + i) += e[i]; if (f < t) M(t * FACTOR + i, f * FACTOR + i) -= e[i]; else M(f * FACTOR + i, t * FACTOR + i) -= e[i]; B[f * FACTOR + i] -= a[i]; B[t * FACTOR + i] += a[i]; } M(f * FACTOR + 1, f * FACTOR) += e[3]; M(t * FACTOR + 1, t * FACTOR) += e[3]; M(f * FACTOR + 2, f * FACTOR) += e[4]; M(t * FACTOR + 2, t * FACTOR) += e[4]; M(f * FACTOR + 2, f * FACTOR + 1) += e[5]; M(t * FACTOR + 2, t * FACTOR + 1) += e[5]; if (f < t) { M(t * FACTOR + 1, f * FACTOR) -= e[3]; M(t * FACTOR, f * FACTOR + 1) -= e[3]; M(t * FACTOR + 2, f * FACTOR) -= e[4]; M(t * FACTOR, f * FACTOR + 2) -= e[4]; M(t * FACTOR + 2, f * FACTOR + 1) -= e[5]; M(t * FACTOR + 1, f * FACTOR + 2) -= e[5]; } else { M(f * FACTOR + 1, t * FACTOR) -= e[3]; M(f * FACTOR, t * FACTOR + 1) -= e[3]; M(f * FACTOR + 2, t * FACTOR) -= e[4]; M(f * FACTOR, t * FACTOR + 2) -= e[4]; M(f * FACTOR + 2, t * FACTOR + 1) -= e[5]; M(f * FACTOR + 1, t * FACTOR + 2) -= e[5]; } } #endif } } } } #if PRINT_MATRICES print_matrix(M, B, n * FACTOR); /* 'ave a look! */ #endif #ifdef SOR /* defined in network.c, may be altered by -z on command line */ if (optimize & BITA('i')) sor(M, B, n * FACTOR); else #endif choleski(M, B, n * FACTOR); { for (int m = (int)(n - 1); m >= 0; m--) { #ifdef NO_COVARIANCES stn_tab[m]->p[dim] = B[m]; if (dim == 0) { SVX_ASSERT2(pos_fixed(stn_tab[m]), "setting station coordinates didn't mark pos as fixed"); } #else for (int i = 0; i < 3; i++) { stn_tab[m]->p[i] = B[m * FACTOR + i]; } SVX_ASSERT2(pos_fixed(stn_tab[m]), "setting station coordinates didn't mark pos as fixed"); #endif } } } // Put the solved stations back on fixedlist. listend->next = fixedlist; if (fixedlist) fixedlist->prev = listend; fixedlist = list; free(B); free(M); free(stn_tab); #if DEBUG_MATRIX for (node *stn = list; stn; stn = stn->next) { printf("(%8.2f, %8.2f, %8.2f ) ", POS(stn, 0), POS(stn, 1), POS(stn, 2)); print_prefix(stn->name); putnl(); } #endif } /* Solve MX=B for X by first factoring M into LDL'. This is a modified form * of Choleski factorisation - the original Choleski factorisation is LL', * but this modified version has the advantage of avoiding O(n) square root * calculations. */ /* Note M must be symmetric positive definite */ /* routine is entitled to scribble on M and B if it wishes */ static void choleski(real *M, real *B, long n) { for (int j = 1; j < n; j++) { real V; for (int i = 0; i < j; i++) { V = (real)0.0; for (int k = 0; k < i; k++) V += M(i,k) * M(j,k) * M(k,k); M(j,i) = (M(j,i) - V) / M(i,i); } V = (real)0.0; for (int k = 0; k < j; k++) V += M(j,k) * M(j,k) * M(k,k); M(j,j) -= V; /* may be best to add M() last for numerical reasons too */ } /* Multiply x by L inverse */ for (int i = 0; i < n - 1; i++) { for (int j = i + 1; j < n; j++) { B[j] -= M(j,i) * B[i]; } } /* Multiply x by D inverse */ for (int i = 0; i < n; i++) { B[i] /= M(i,i); } /* Multiply x by (L transpose) inverse */ for (int i = (int)(n - 1); i > 0; i--) { for (int j = i - 1; j >= 0; j--) { B[j] -= M(i,j) * B[i]; } } /* printf("\n%ld/%ld\n\n",flops,flopsTot); */ } #ifdef SOR /* factor to use for SOR (must have 1 <= SOR_factor < 2) */ #define SOR_factor 1.93 /* 1.95 */ /* Solve MX=B for X by SOR of Gauss-Siedel */ /* routine is entitled to scribble on M and B if it wishes */ static void sor(real *M, real *B, long n) { long it = 0; real *X = osmalloc(n * sizeof(real)); const real threshold = 0.00001; printf("reciprocating diagonal\n"); /* TRANSLATE */ /* munge diagonal so we can multiply rather than divide */ for (int row = n - 1; row >= 0; row--) { M(row,row) = 1 / M(row,row); X[row] = 0; } printf("starting iteration\n"); /* TRANSLATE */ real t; do { /*printf("*");*/ it++; t = 0.0; for (int row = 0; row < n; row++) { real x = B[row]; int col; for (col = 0; col < row; col++) x -= M(row,col) * X[col]; for (col++; col < n; col++) x -= M(col,row) * X[col]; x *= M(row,row); real sor_delta = (x - X[row]) * SOR_factor; X[row] += sor_delta; real t2 = fabs(sor_delta); if (t2 > t) t = t2; } printf("% 6ld: %8.6f\n", it, t); } while (t >= threshold && it < 100000); if (t >= threshold) { fprintf(stderr, "*not* converged after %ld iterations\n", it); BUG("iteration stinks"); } printf("%ld iterations\n", it); /* TRANSLATE */ #if 0 putnl(); for (int row = n - 1; row >= 0; row--) { t = 0.0; for (int col = 0; col < row; col++) t += M(row, col) * X[col]; t += X[row] / M(row, row); for (col = row + 1; col < n; col++) t += M(col, row) * X[col]; printf("[ %f %f ]\n", t, B[row]); } #endif for (int row = n - 1; row >= 0; row--) B[row] = X[row]; free(X); printf("\ndone\n"); /* TRANSLATE */ } #endif #if PRINT_MATRICES static void print_matrix(real *M, real *B, long n) { printf("Matrix, M and vector, B:\n"); for (long row = 0; row < n; row++) { long col; for (col = 0; col <= row; col++) printf("%6.2f\t", M(row, col)); for (; col <= n; col++) printf(" \t"); printf("\t%6.2f\n", B[row]); } putnl(); return; } #endif