// // gla-gl.cc // // OpenGL implementation for the GLA abstraction layer. // // Copyright (C) 2002-2003,2005 Mark R. Shinwell // Copyright (C) 2003,2004,2005,2006,2007,2010,2011,2012,2013,2014,2015,2017,2018 Olly Betts // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA // #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include "aven.h" #include "gla.h" #include "gllogerror.h" #include "message.h" #include "useful.h" #ifdef HAVE_GL_GL_H # include #elif defined HAVE_OPENGL_GL_H # include #endif #ifdef HAVE_GL_GLEXT_H # include #elif defined HAVE_OPENGL_GLEXT_H # include #endif #ifndef GL_POINT_SIZE_MAX #define GL_POINT_SIZE_MAX 0x8127 #endif #ifndef GL_POINT_SPRITE #define GL_POINT_SPRITE 0x8861 #endif #ifndef GL_COORD_REPLACE #define GL_COORD_REPLACE 0x8862 #endif // GL_POINT_SIZE_RANGE is deprecated in OpenGL 1.2 and later, and replaced by // GL_SMOOTH_POINT_SIZE_RANGE. #ifndef GL_SMOOTH_POINT_SIZE_RANGE #define GL_SMOOTH_POINT_SIZE_RANGE GL_POINT_SIZE_RANGE #endif // GL_POINT_SIZE_GRANULARITY is deprecated in OpenGL 1.2 and later, and // replaced by GL_SMOOTH_POINT_SIZE_GRANULARITY. #ifndef GL_SMOOTH_POINT_SIZE_GRANULARITY #define GL_SMOOTH_POINT_SIZE_GRANULARITY GL_POINT_SIZE_GRANULARITY #endif // GL_ALIASED_POINT_SIZE_RANGE was added in OpenGL 1.2. #ifndef GL_ALIASED_POINT_SIZE_RANGE #define GL_ALIASED_POINT_SIZE_RANGE 0x846D #endif using namespace std; const int BLOB_DIAMETER = 5; #define BLOB_TEXTURE \ o, o, o, o, o, o, o, o,\ o, o, o, o, o, o, o, o,\ o, o, I, I, I, o, o, o,\ o, I, I, I, I, I, o, o,\ o, I, I, I, I, I, o, o,\ o, I, I, I, I, I, o, o,\ o, o, I, I, I, o, o, o,\ o, o, o, o, o, o, o, o #define CROSS_TEXTURE \ o, o, o, o, o, o, o, o,\ I, o, o, o, o, o, I, o,\ o, I, o, o, o, I, o, o,\ o, o, I, o, I, o, o, o,\ o, o, o, I, o, o, o, o,\ o, o, I, o, I, o, o, o,\ o, I, o, o, o, I, o, o,\ I, o, o, o, o, o, I, o // Declared in gllogerror.h. bool opengl_initialised = false; static bool double_buffered = false; static const int* wx_gl_attribs = NULL; bool GLACanvas::check_visual() { static const int wx_gl_attribs_full[] = { WX_GL_DOUBLEBUFFER, WX_GL_RGBA, WX_GL_DEPTH_SIZE, 16, 0 }; // Use a double-buffered visual if available, as it will give much smoother // animation. double_buffered = true; wx_gl_attribs = wx_gl_attribs_full; if (!IsDisplaySupported(wx_gl_attribs)) { ++wx_gl_attribs; if (!IsDisplaySupported(wx_gl_attribs)) { return false; } double_buffered = false; } return true; } string GetGLSystemDescription() { // If OpenGL isn't initialised we may get a SEGV from glGetString. if (!opengl_initialised) return "No OpenGL information available yet - try opening a file."; const char *p = (const char*)glGetString(GL_VERSION); if (!p) return "Couldn't read OpenGL version!"; string info; info += "OpenGL "; info += p; info += '\n'; info += (const char*)glGetString(GL_VENDOR); info += '\n'; info += (const char*)glGetString(GL_RENDERER); #if defined __WXGTK__ || defined __WXX11__ || defined __WXMOTIF__ info += string_format("\nGLX %0.1f\n", wxGLCanvas::GetGLXVersion() * 0.1); #else info += '\n'; #endif GLint red, green, blue; glGetIntegerv(GL_RED_BITS, &red); glGetIntegerv(GL_GREEN_BITS, &green); glGetIntegerv(GL_BLUE_BITS, &blue); GLint max_texture_size; glGetIntegerv(GL_MAX_TEXTURE_SIZE, &max_texture_size); GLint max_viewport[2]; glGetIntegerv(GL_MAX_VIEWPORT_DIMS, max_viewport); GLdouble point_size_range[2]; glGetDoublev(GL_SMOOTH_POINT_SIZE_RANGE, point_size_range); GLdouble point_size_granularity; glGetDoublev(GL_SMOOTH_POINT_SIZE_GRANULARITY, &point_size_granularity); info += string_format("R%dG%dB%d\n" "Max Texture size: %dx%d\n" "Max Viewport size: %dx%d\n" "Smooth Point Size %.3f-%.3f (granularity %.3f)", (int)red, (int)green, (int)blue, (int)max_texture_size, (int)max_texture_size, (int)max_viewport[0], (int)max_viewport[1], point_size_range[0], point_size_range[1], point_size_granularity); glGetDoublev(GL_ALIASED_POINT_SIZE_RANGE, point_size_range); if (glGetError() != GL_INVALID_ENUM) { info += string_format("\nAliased point size %.3f-%.3f", point_size_range[0], point_size_range[1]); } info += "\nDouble buffered: "; if (double_buffered) info += "true"; else info += "false"; const GLubyte* gl_extensions = glGetString(GL_EXTENSIONS); if (*gl_extensions) { info += '\n'; info += (const char*)gl_extensions; } return info; } static bool glpoint_sprite_works() { // Point sprites provide an easy, fast way for us to draw crosses by // texture mapping GL points. // // If we have OpenGL >= 2.0 then we definitely have GL_POINT_SPRITE. // Otherwise see if we have the GL_ARB_point_sprite or GL_NV_point_sprite // extensions. // // The symbolic constants GL_POINT_SPRITE, GL_POINT_SPRITE_ARB, and // GL_POINT_SPRITE_NV all give the same number so it doesn't matter // which we use. static bool glpoint_sprite = false; static bool checked = false; if (!checked) { float maxSize = 0.0f; glGetFloatv(GL_POINT_SIZE_MAX, &maxSize); if (maxSize >= 8) { glpoint_sprite = (atoi((const char *)glGetString(GL_VERSION)) >= 2); if (!glpoint_sprite) { const char * p = (const char *)glGetString(GL_EXTENSIONS); while (true) { size_t l = 0; if (memcmp(p, "GL_ARB_point_sprite", 19) == 0) { l = 19; } else if (memcmp(p, "GL_NV_point_sprite", 18) == 0) { l = 18; } if (l) { p += l; if (*p == '\0' || *p == ' ') { glpoint_sprite = true; break; } } p = strchr(p + 1, ' '); if (!p) break; ++p; } } } checked = true; } return glpoint_sprite; } void log_gl_error(const wxChar * str, GLenum error_code) { wxString msg; switch (error_code) { case GL_INVALID_ENUM: msg = "Invalid OpenGL enumerated value"; break; case GL_INVALID_VALUE: msg = "Invalid OpenGL numeric argument value"; break; case GL_INVALID_OPERATION: msg = "Invalid OpenGL operation"; break; case GL_INVALID_FRAMEBUFFER_OPERATION: msg = "Invalid OpenGL framebuffer operation"; break; case GL_OUT_OF_MEMORY: msg = wmsg(/*Out of memory*/389); break; case GL_STACK_UNDERFLOW: msg = "OpenGL stack underflow"; break; case GL_STACK_OVERFLOW: msg = "OpenGL stack overflow"; break; default: msg.Format("Unknown OpenGL error code: %d", int(error_code)); break; } wxLogError(str, msg); } // // GLAPen // GLAPen::GLAPen() { components[0] = components[1] = components[2] = 0.0; } void GLAPen::SetColour(double red, double green, double blue) { components[0] = red; components[1] = green; components[2] = blue; } double GLAPen::GetRed() const { return components[0]; } double GLAPen::GetGreen() const { return components[1]; } double GLAPen::GetBlue() const { return components[2]; } void GLAPen::Interpolate(const GLAPen& pen, double how_far) { components[0] += how_far * (pen.GetRed() - components[0]); components[1] += how_far * (pen.GetGreen() - components[1]); components[2] += how_far * (pen.GetBlue() - components[2]); } struct ColourTriple { // RGB triple: values are from 0-255 inclusive for each component. unsigned char r, g, b; }; // These must be in the same order as the entries in COLOURS[] below. const ColourTriple COLOURS[] = { { 0, 0, 0 }, // black { 100, 100, 100 }, // grey { 180, 180, 180 }, // light grey { 140, 140, 140 }, // light grey 2 { 90, 90, 90 }, // dark grey { 255, 255, 255 }, // white { 0, 100, 255}, // turquoise { 0, 255, 40 }, // green { 150, 205, 224 }, // indicator 1 { 114, 149, 160 }, // indicator 2 { 255, 255, 0 }, // yellow { 255, 0, 0 }, // red { 40, 40, 255 }, // blue }; bool GLAList::need_to_generate() { // Bail out if the list is already cached, or can't usefully be cached. if (flags & (GLACanvas::CACHED|GLACanvas::NEVER_CACHE)) return false; // Create a new OpenGL list to hold this sequence of drawing // operations. if (gl_list == 0) { gl_list = glGenLists(1); CHECK_GL_ERROR("GLAList::need_to_generate", "glGenLists"); #ifdef GLA_DEBUG printf("glGenLists(1) returned %u\n", (unsigned)gl_list); #endif if (gl_list == 0) { // If we can't create a list for any reason, fall back to just // drawing directly, and flag the list as NEVER_CACHE as there's // unlikely to be much point calling glGenLists() again. flags = GLACanvas::NEVER_CACHE; return false; } // We should have 256 lists for font drawing and a dozen or so for 2D // and 3D lists. So something is amiss if we've generated 1000 lists, // probably a infinite loop in the lazy list mechanism. assert(gl_list < 1000); } // https://www.opengl.org/resources/faq/technical/displaylist.htm advises: // // "Stay away from GL_COMPILE_AND_EXECUTE mode. Instead, create the // list using GL_COMPILE mode, then execute it with glCallList()." glNewList(gl_list, GL_COMPILE); CHECK_GL_ERROR("GLAList::need_to_generate", "glNewList"); return true; } void GLAList::finalise(unsigned int list_flags) { glEndList(); CHECK_GL_ERROR("GLAList::finalise", "glEndList"); if (list_flags & GLACanvas::NEVER_CACHE) { glDeleteLists(gl_list, 1); CHECK_GL_ERROR("GLAList::finalise", "glDeleteLists"); gl_list = 0; flags = GLACanvas::NEVER_CACHE; } else { flags = list_flags | GLACanvas::CACHED; } } bool GLAList::DrawList() const { if ((flags & GLACanvas::CACHED) == 0) return false; glCallList(gl_list); CHECK_GL_ERROR("GLAList::DrawList", "glCallList"); return true; } // // GLACanvas // BEGIN_EVENT_TABLE(GLACanvas, wxGLCanvas) EVT_SIZE(GLACanvas::OnSize) END_EVENT_TABLE() // Pass wxWANTS_CHARS so that the window gets cursor keys on MS Windows. GLACanvas::GLACanvas(wxWindow* parent, int id) : wxGLCanvas(parent, id, wx_gl_attribs, wxDefaultPosition, wxDefaultSize, wxWANTS_CHARS), ctx(this), m_Translation(), blob_method(UNKNOWN), cross_method(UNKNOWN), x_size(0), y_size(0) { // Constructor. m_Quadric = NULL; m_Pan = 0.0; m_Tilt = 0.0; m_Scale = 0.0; m_VolumeDiameter = 1.0; m_SmoothShading = false; m_Texture = 0; m_Textured = false; m_Perspective = false; m_Fog = false; m_AntiAlias = false; list_flags = 0; alpha = 1.0; } GLACanvas::~GLACanvas() { // Destructor. if (m_Quadric) { gluDeleteQuadric(m_Quadric); CHECK_GL_ERROR("~GLACanvas", "gluDeleteQuadric"); } } void GLACanvas::FirstShow() { // Update our record of the client area size and centre. GetClientSize(&x_size, &y_size); if (x_size < 1) x_size = 1; if (y_size < 1) y_size = 1; ctx.SetCurrent(*this); opengl_initialised = true; // Set the background colour of the canvas to black. glClearColor(0.0, 0.0, 0.0, 1.0); CHECK_GL_ERROR("FirstShow", "glClearColor"); // Set viewport. glViewport(0, 0, x_size, y_size); CHECK_GL_ERROR("FirstShow", "glViewport"); save_hints = false; vendor = wxString((const char *)glGetString(GL_VENDOR), wxConvUTF8); renderer = wxString((const char *)glGetString(GL_RENDERER), wxConvUTF8); { wxConfigBase * cfg = wxConfigBase::Get(); wxString s; if (cfg->Read(wxT("opengl_survex"), &s, wxString()) && s == wxT(VERSION) && cfg->Read(wxT("opengl_vendor"), &s, wxString()) && s == vendor && cfg->Read(wxT("opengl_renderer"), &s, wxString()) && s == renderer) { // The survex version, vendor and renderer are the same as those // we cached hints for, so use those hints. int v; if (cfg->Read(wxT("blob_method"), &v, 0) && (v == SPRITE || v == POINT || v == LINES)) { // How to draw blobs. blob_method = v; } if (cfg->Read(wxT("cross_method"), &v, 0) && (v == SPRITE || v == LINES)) { // How to draw crosses. cross_method = v; } } } if (m_Quadric) return; // One time initialisation follows. m_Quadric = gluNewQuadric(); CHECK_GL_ERROR("FirstShow", "gluNewQuadric"); if (!m_Quadric) { abort(); // FIXME need to cope somehow } glShadeModel(GL_FLAT); CHECK_GL_ERROR("FirstShow", "glShadeModel"); glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); // So text works. CHECK_GL_ERROR("FirstShow", "glPolygonMode"); //glAlphaFunc(GL_GREATER, 0.5f); //CHECK_GL_ERROR("FirstShow", "glAlphaFunc"); // We want glReadPixels() to read from the front buffer (which is the // default for single-buffered displays). if (double_buffered) { glReadBuffer(GL_FRONT); CHECK_GL_ERROR("FirstShow", "glReadBuffer"); } // Grey fog effect. GLfloat fogcolour[4] = { 0.5, 0.5, 0.5, 1.0 }; glFogfv(GL_FOG_COLOR, fogcolour); CHECK_GL_ERROR("FirstShow", "glFogfv"); // Linear fogging. glFogi(GL_FOG_MODE, GL_LINEAR); CHECK_GL_ERROR("FirstShow", "glFogi"); // Optimise for speed (compute fog per vertex). glHint(GL_FOG_HINT, GL_FASTEST); CHECK_GL_ERROR("FirstShow", "glHint"); // No padding on pixel packing and unpacking (default is to pad each // line to a multiple of 4 bytes). glPixelStorei(GL_UNPACK_ALIGNMENT, 1); // For setting texture maps. CHECK_GL_ERROR("FirstShow", "glPixelStorei GL_UNPACK_ALIGNMENT"); glPixelStorei(GL_PACK_ALIGNMENT, 1); // For screengrabs and movies. CHECK_GL_ERROR("FirstShow", "glPixelStorei GL_PACK_ALIGNMENT"); // Load font wxString path = wmsg_cfgpth(); path += wxCONFIG_PATH_SEPARATOR; path += wxT("unifont.pixelfont"); if (!m_Font.load(path)) { // FIXME: do something better. // We have this message available: Error in format of font file ā€œ%sā€ fprintf(stderr, "Failed to parse compiled-in font data\n"); exit(1); } if (blob_method == UNKNOWN) { // Check if we can use GL_POINTS to plot blobs at stations. GLdouble point_size_range[2]; glGetDoublev(GL_SMOOTH_POINT_SIZE_RANGE, point_size_range); CHECK_GL_ERROR("FirstShow", "glGetDoublev GL_SMOOTH_POINT_SIZE_RANGE"); if (point_size_range[0] <= BLOB_DIAMETER && point_size_range[1] >= BLOB_DIAMETER) { blob_method = POINT; } else { blob_method = glpoint_sprite_works() ? SPRITE : LINES; } save_hints = true; } if (blob_method == POINT) { glPointSize(BLOB_DIAMETER); CHECK_GL_ERROR("FirstShow", "glPointSize"); } if (cross_method == UNKNOWN) { cross_method = glpoint_sprite_works() ? SPRITE : LINES; save_hints = true; } if (cross_method == SPRITE) { glGenTextures(1, &m_CrossTexture); CHECK_GL_ERROR("FirstShow", "glGenTextures"); glBindTexture(GL_TEXTURE_2D, m_CrossTexture); CHECK_GL_ERROR("FirstShow", "glBindTexture"); // Cross image for drawing crosses using texture mapped point sprites. const unsigned char crossteximage[128] = { #define o 0,0 #define I 255,255 CROSS_TEXTURE #undef o #undef I }; glPixelStorei(GL_UNPACK_ALIGNMENT, 1); CHECK_GL_ERROR("FirstShow", "glPixelStorei"); glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); CHECK_GL_ERROR("FirstShow", "glTexEnvi"); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP); CHECK_GL_ERROR("FirstShow", "glTexParameteri GL_TEXTURE_WRAP_S"); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP); CHECK_GL_ERROR("FirstShow", "glTexParameteri GL_TEXTURE_WRAP_T"); glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE_ALPHA, 8, 8, 0, GL_LUMINANCE_ALPHA, GL_UNSIGNED_BYTE, (GLvoid *)crossteximage); CHECK_GL_ERROR("FirstShow", "glTexImage2D"); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); CHECK_GL_ERROR("FirstShow", "glTexParameteri GL_TEXTURE_MAG_FILTER"); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); CHECK_GL_ERROR("FirstShow", "glTexParameteri GL_TEXTURE_MIN_FILTER"); } if (blob_method == SPRITE) { glGenTextures(1, &m_BlobTexture); CHECK_GL_ERROR("FirstShow", "glGenTextures"); glBindTexture(GL_TEXTURE_2D, m_BlobTexture); CHECK_GL_ERROR("FirstShow", "glBindTexture"); // Image for drawing blobs using texture mapped point sprites. const unsigned char blobteximage[128] = { #define o 0,0 #define I 255,255 BLOB_TEXTURE #undef o #undef I }; glPixelStorei(GL_UNPACK_ALIGNMENT, 1); CHECK_GL_ERROR("FirstShow", "glPixelStorei"); glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); CHECK_GL_ERROR("FirstShow", "glTexEnvi"); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP); CHECK_GL_ERROR("FirstShow", "glTexParameteri GL_TEXTURE_WRAP_S"); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP); CHECK_GL_ERROR("FirstShow", "glTexParameteri GL_TEXTURE_WRAP_T"); glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE_ALPHA, 8, 8, 0, GL_LUMINANCE_ALPHA, GL_UNSIGNED_BYTE, (GLvoid *)blobteximage); CHECK_GL_ERROR("FirstShow", "glTexImage2D"); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); CHECK_GL_ERROR("FirstShow", "glTexParameteri GL_TEXTURE_MAG_FILTER"); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); CHECK_GL_ERROR("FirstShow", "glTexParameteri GL_TEXTURE_MIN_FILTER"); } } void GLACanvas::Clear() { // Clear the canvas. glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); CHECK_GL_ERROR("Clear", "glClear"); } void GLACanvas::SetScale(Double scale) { if (scale != m_Scale) { vector::iterator i; for (i = drawing_lists.begin(); i != drawing_lists.end(); ++i) { i->invalidate_if(INVALIDATE_ON_SCALE); } m_Scale = scale; } } void GLACanvas::OnSize(wxSizeEvent & event) { wxSize size = event.GetSize(); unsigned int mask = 0; if (size.GetWidth() != x_size) mask |= INVALIDATE_ON_X_RESIZE; if (size.GetHeight() != y_size) mask |= INVALIDATE_ON_Y_RESIZE; if (mask) { vector::iterator i; for (i = drawing_lists.begin(); i != drawing_lists.end(); ++i) { i->invalidate_if(mask); } // The width and height go to zero when the panel is dragged right // across so we clamp them to be at least 1 to avoid problems. x_size = size.GetWidth(); y_size = size.GetHeight(); if (x_size < 1) x_size = 1; if (y_size < 1) y_size = 1; } event.Skip(); if (!opengl_initialised) return; // Set viewport. glViewport(0, 0, x_size, y_size); CHECK_GL_ERROR("OnSize", "glViewport"); } void GLACanvas::AddTranslationScreenCoordinates(int dx, int dy) { // Translate the data by a given amount, specified in screen coordinates. // Find out how far the translation takes us in data coordinates. SetDataTransform(); double x0, y0, z0; double x, y, z; gluUnProject(0.0, 0.0, 0.0, modelview_matrix, projection_matrix, viewport, &x0, &y0, &z0); CHECK_GL_ERROR("AddTranslationScreenCoordinates", "gluUnProject"); gluUnProject(dx, -dy, 0.0, modelview_matrix, projection_matrix, viewport, &x, &y, &z); CHECK_GL_ERROR("AddTranslationScreenCoordinates", "gluUnProject (2)"); // Apply the translation. AddTranslation(Vector3(x - x0, y - y0, z - z0)); } void GLACanvas::SetVolumeDiameter(glaCoord diameter) { // Set the size of the data drawing volume by giving the diameter of the // smallest sphere containing it. m_VolumeDiameter = max(glaCoord(1.0), diameter); } void GLACanvas::StartDrawing() { // Prepare for a redraw operation. ctx.SetCurrent(*this); glDepthMask(GL_TRUE); if (!save_hints) return; // We want to check on the second redraw. static int draw_count = 2; if (--draw_count != 0) return; if (cross_method != LINES) { SetColour(col_WHITE); Clear(); SetDataTransform(); BeginCrosses(); DrawCross(-m_Translation.GetX(), -m_Translation.GetY(), -m_Translation.GetZ()); EndCrosses(); static const unsigned char expected_cross[64 * 3] = { #define o 0,0,0 #define I 255,255,255 CROSS_TEXTURE #undef o #undef I }; if (!CheckVisualFidelity(expected_cross)) { cross_method = LINES; save_hints = true; } } if (blob_method != LINES) { SetColour(col_WHITE); Clear(); SetDataTransform(); BeginBlobs(); DrawBlob(-m_Translation.GetX(), -m_Translation.GetY(), -m_Translation.GetZ()); EndBlobs(); static const unsigned char expected_blob[64 * 3] = { #define o 0,0,0 #define I 255,255,255 BLOB_TEXTURE #undef o #undef I }; if (!CheckVisualFidelity(expected_blob)) { blob_method = LINES; save_hints = true; } } wxConfigBase * cfg = wxConfigBase::Get(); cfg->Write(wxT("opengl_survex"), wxT(VERSION)); cfg->Write(wxT("opengl_vendor"), vendor); cfg->Write(wxT("opengl_renderer"), renderer); cfg->Write(wxT("blob_method"), blob_method); cfg->Write(wxT("cross_method"), cross_method); cfg->Flush(); save_hints = false; } void GLACanvas::EnableSmoothPolygons(bool filled) { // Prepare for drawing smoothly-shaded polygons. // Only use this when required (in particular lines in lists may not be // coloured correctly when this is enabled). glPushAttrib(GL_ENABLE_BIT|GL_LIGHTING_BIT|GL_POLYGON_BIT); if (filled) { glShadeModel(GL_SMOOTH); glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); } else { glDisable(GL_LINE_SMOOTH); glDisable(GL_TEXTURE_2D); glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); } CHECK_GL_ERROR("EnableSmoothPolygons", "glPolygonMode"); if (filled && m_SmoothShading) { static const GLfloat mat_specular[] = { 0.2, 0.2, 0.2, 1.0 }; static const GLfloat light_position[] = { -1.0, -1.0, -1.0, 0.0 }; static const GLfloat light_ambient[] = { 0.3, 0.3, 0.3, 1.0 }; static const GLfloat light_diffuse[] = { 0.7, 0.7, 0.7, 1.0 }; glEnable(GL_COLOR_MATERIAL); glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, mat_specular); glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, 10.0); glLightfv(GL_LIGHT0, GL_AMBIENT, light_ambient); glLightfv(GL_LIGHT0, GL_DIFFUSE, light_diffuse); glLightfv(GL_LIGHT0, GL_POSITION, light_position); glColorMaterial(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE); glEnable(GL_LIGHTING); glEnable(GL_LIGHT0); } } void GLACanvas::DisableSmoothPolygons() { glPopAttrib(); } void GLACanvas::PlaceNormal(const Vector3 &v) { // Add a normal (for polygons etc.) glNormal3d(v.GetX(), v.GetY(), v.GetZ()); } void GLACanvas::SetDataTransform() { // Set projection. glMatrixMode(GL_PROJECTION); CHECK_GL_ERROR("SetDataTransform", "glMatrixMode"); glLoadIdentity(); CHECK_GL_ERROR("SetDataTransform", "glLoadIdentity"); double aspect = double(y_size) / double(x_size); Double near_plane = 1.0; if (m_Perspective) { Double lr = near_plane * tan(rad(25.0)); Double far_plane = m_VolumeDiameter * 5 + near_plane; // FIXME: work out properly Double tb = lr * aspect; glFrustum(-lr, lr, -tb, tb, near_plane, far_plane); CHECK_GL_ERROR("SetViewportAndProjection", "glFrustum"); } else { near_plane = 0.0; assert(m_Scale != 0.0); Double lr = m_VolumeDiameter / m_Scale * 0.5; Double far_plane = m_VolumeDiameter + near_plane; Double tb = lr; if (aspect >= 1.0) { tb *= aspect; } else { lr /= aspect; } glOrtho(-lr, lr, -tb, tb, near_plane, far_plane); CHECK_GL_ERROR("SetViewportAndProjection", "glOrtho"); } // Set the modelview transform for drawing data. glMatrixMode(GL_MODELVIEW); CHECK_GL_ERROR("SetDataTransform", "glMatrixMode"); glLoadIdentity(); CHECK_GL_ERROR("SetDataTransform", "glLoadIdentity"); if (m_Perspective) { glTranslated(0.0, 0.0, -near_plane); } else { glTranslated(0.0, 0.0, -0.5 * m_VolumeDiameter); } CHECK_GL_ERROR("SetDataTransform", "glTranslated"); // Get axes the correct way around (z upwards, y into screen) glRotated(-90.0, 1.0, 0.0, 0.0); CHECK_GL_ERROR("SetDataTransform", "glRotated"); glRotated(-m_Tilt, 1.0, 0.0, 0.0); CHECK_GL_ERROR("SetDataTransform", "glRotated"); glRotated(m_Pan, 0.0, 0.0, 1.0); CHECK_GL_ERROR("SetDataTransform", "CopyToOpenGL"); if (m_Perspective) { glTranslated(m_Translation.GetX(), m_Translation.GetY(), m_Translation.GetZ()); CHECK_GL_ERROR("SetDataTransform", "glTranslated"); } // Save projection matrix. glGetDoublev(GL_PROJECTION_MATRIX, projection_matrix); CHECK_GL_ERROR("SetDataTransform", "glGetDoublev"); // Save viewport coordinates. glGetIntegerv(GL_VIEWPORT, viewport); CHECK_GL_ERROR("SetDataTransform", "glGetIntegerv"); // Save modelview matrix. glGetDoublev(GL_MODELVIEW_MATRIX, modelview_matrix); CHECK_GL_ERROR("SetDataTransform", "glGetDoublev"); if (!m_Perspective) { // Adjust the translation so we don't change the Z position of the model double X, Y, Z; gluProject(m_Translation.GetX(), m_Translation.GetY(), m_Translation.GetZ(), modelview_matrix, projection_matrix, viewport, &X, &Y, &Z); double Tx, Ty, Tz; gluUnProject(X, Y, 0.5, modelview_matrix, projection_matrix, viewport, &Tx, &Ty, &Tz); glTranslated(Tx, Ty, Tz); CHECK_GL_ERROR("SetDataTransform", "glTranslated"); glGetDoublev(GL_MODELVIEW_MATRIX, modelview_matrix); } glEnable(GL_DEPTH_TEST); CHECK_GL_ERROR("SetDataTransform", "glEnable GL_DEPTH_TEST"); if (m_Textured) { glBindTexture(GL_TEXTURE_2D, m_Texture); glEnable(GL_TEXTURE_2D); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); CHECK_GL_ERROR("ToggleTextured", "glTexParameteri GL_TEXTURE_WRAP_S"); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); CHECK_GL_ERROR("ToggleTextured", "glTexParameteri GL_TEXTURE_WRAP_T"); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); CHECK_GL_ERROR("ToggleTextured", "glTexParameteri GL_TEXTURE_MAG_FILTER"); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); CHECK_GL_ERROR("ToggleTextured", "glTexParameteri GL_TEXTURE_MIN_FILTER"); glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); } else { glDisable(GL_TEXTURE_2D); } if (m_Fog) { glFogf(GL_FOG_START, near_plane); glFogf(GL_FOG_END, near_plane + m_VolumeDiameter); glEnable(GL_FOG); } else { glDisable(GL_FOG); } glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); if (m_AntiAlias) { glEnable(GL_LINE_SMOOTH); } else { glDisable(GL_LINE_SMOOTH); } } void GLACanvas::SetIndicatorTransform() { list_flags |= NEVER_CACHE; // Set the modelview transform and projection for drawing indicators. glDisable(GL_DEPTH_TEST); CHECK_GL_ERROR("SetIndicatorTransform", "glDisable GL_DEPTH_TEST"); glDisable(GL_FOG); CHECK_GL_ERROR("SetIndicatorTransform", "glDisable GL_FOG"); // Just a simple 2D projection. glMatrixMode(GL_PROJECTION); CHECK_GL_ERROR("SetIndicatorTransform", "glMatrixMode"); glLoadIdentity(); CHECK_GL_ERROR("SetIndicatorTransform", "glLoadIdentity (2)"); gluOrtho2D(0, x_size, 0, y_size); CHECK_GL_ERROR("SetIndicatorTransform", "gluOrtho2D"); // No modelview transform. glMatrixMode(GL_MODELVIEW); CHECK_GL_ERROR("SetIndicatorTransform", "glMatrixMode"); glLoadIdentity(); CHECK_GL_ERROR("SetIndicatorTransform", "glLoadIdentity"); glDisable(GL_TEXTURE_2D); CHECK_GL_ERROR("SetIndicatorTransform", "glDisable GL_TEXTURE_2D"); glDisable(GL_BLEND); CHECK_GL_ERROR("SetIndicatorTransform", "glDisable GL_BLEND"); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP); CHECK_GL_ERROR("SetIndicatorTransform", "glTexParameteri GL_TEXTURE_WRAP_S"); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP); CHECK_GL_ERROR("SetIndicatorTransform", "glTexParameteri GL_TEXTURE_WRAP_T"); glAlphaFunc(GL_GREATER, 0.5f); CHECK_GL_ERROR("SetIndicatorTransform", "glAlphaFunc"); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); CHECK_GL_ERROR("SetIndicatorTransform", "glTexParameteri GL_TEXTURE_MAG_FILTER"); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); CHECK_GL_ERROR("SetIndicatorTransform", "glTexParameteri GL_TEXTURE_MIN_FILTER"); glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_FASTEST); CHECK_GL_ERROR("SetIndicatorTransform", "glHint"); } void GLACanvas::FinishDrawing() { // Complete a redraw operation. if (double_buffered) { SwapBuffers(); } else { glFlush(); CHECK_GL_ERROR("FinishDrawing", "glFlush"); } } void GLACanvas::DrawList(unsigned int l) { // FIXME: uncomment to disable use of lists for debugging: // GenerateList(l); return; if (l >= drawing_lists.size()) drawing_lists.resize(l + 1); // We generate the OpenGL lists lazily to minimise delays on startup. // So check if we need to generate the OpenGL list now. if (drawing_lists[l].need_to_generate()) { // Clear list_flags so that we can note what conditions to invalidate // the cached OpenGL list on. list_flags = 0; #ifdef GLA_DEBUG printf("generating list #%u... ", l); m_Vertices = 0; #endif GenerateList(l); #ifdef GLA_DEBUG printf("done (%d vertices)\n", m_Vertices); #endif drawing_lists[l].finalise(list_flags); } if (!drawing_lists[l].DrawList()) { // That list isn't cached (which means it probably can't usefully be // cached). GenerateList(l); } } void GLACanvas::DrawListZPrepass(unsigned int l) { glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE); DrawList(l); glDepthMask(GL_FALSE); glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); glDepthFunc(GL_EQUAL); DrawList(l); glDepthMask(GL_TRUE); glDepthFunc(GL_LESS); } void GLACanvas::DrawList2D(unsigned int l, glaCoord x, glaCoord y, Double rotation) { glMatrixMode(GL_PROJECTION); CHECK_GL_ERROR("DrawList2D", "glMatrixMode"); glPushMatrix(); CHECK_GL_ERROR("DrawList2D", "glPushMatrix"); glTranslated(x, y, 0); CHECK_GL_ERROR("DrawList2D", "glTranslated"); if (rotation != 0.0) { glRotated(rotation, 0, 0, -1); CHECK_GL_ERROR("DrawList2D", "glRotated"); } DrawList(l); glMatrixMode(GL_PROJECTION); CHECK_GL_ERROR("DrawList2D", "glMatrixMode 2"); glPopMatrix(); CHECK_GL_ERROR("DrawList2D", "glPopMatrix"); } void GLACanvas::SetColour(const GLAPen& pen, double rgb_scale) { // Set the colour for subsequent operations. glColor4f(pen.GetRed() * rgb_scale, pen.GetGreen() * rgb_scale, pen.GetBlue() * rgb_scale, alpha); } void GLACanvas::SetColour(const GLAPen& pen) { // Set the colour for subsequent operations. glColor4d(pen.components[0], pen.components[1], pen.components[2], alpha); } void GLACanvas::SetColour(gla_colour colour, double rgb_scale) { // Set the colour for subsequent operations. rgb_scale /= 255.0; glColor4f(COLOURS[colour].r * rgb_scale, COLOURS[colour].g * rgb_scale, COLOURS[colour].b * rgb_scale, alpha); } void GLACanvas::SetColour(gla_colour colour) { // Set the colour for subsequent operations. if (alpha == 1.0) { glColor3ubv(&COLOURS[colour].r); } else { glColor4ub(COLOURS[colour].r, COLOURS[colour].g, COLOURS[colour].b, (unsigned char)(255 * alpha)); } } void GLACanvas::DrawText(glaCoord x, glaCoord y, glaCoord z, const wxString& str) { // Draw a text string on the current buffer in the current font. glRasterPos3d(x, y, z); CHECK_GL_ERROR("DrawText", "glRasterPos3d"); m_Font.write_string(str.data(), str.size()); } void GLACanvas::DrawIndicatorText(int x, int y, const wxString& str) { glRasterPos2d(x, y); CHECK_GL_ERROR("DrawIndicatorText", "glRasterPos2d"); m_Font.write_string(str.data(), str.size()); } void GLACanvas::GetTextExtent(const wxString& str, int * x_ext, int * y_ext) const { m_Font.get_text_extent(str.data(), str.size(), x_ext, y_ext); } void GLACanvas::BeginQuadrilaterals() { // Commence drawing of quadrilaterals. glBegin(GL_QUADS); } void GLACanvas::EndQuadrilaterals() { // Finish drawing of quadrilaterals. glEnd(); CHECK_GL_ERROR("EndQuadrilaterals", "glEnd GL_QUADS"); } void GLACanvas::BeginLines() { // Commence drawing of a set of lines. glBegin(GL_LINES); } void GLACanvas::EndLines() { // Finish drawing of a set of lines. glEnd(); CHECK_GL_ERROR("EndLines", "glEnd GL_LINES"); } void GLACanvas::BeginTriangles() { // Commence drawing of a set of triangles. glBegin(GL_TRIANGLES); } void GLACanvas::EndTriangles() { // Finish drawing of a set of triangles. glEnd(); CHECK_GL_ERROR("EndTriangles", "glEnd GL_TRIANGLES"); } void GLACanvas::BeginTriangleStrip() { // Commence drawing of a triangle strip. glBegin(GL_TRIANGLE_STRIP); } void GLACanvas::EndTriangleStrip() { // Finish drawing of a triangle strip. glEnd(); CHECK_GL_ERROR("EndTriangleStrip", "glEnd GL_TRIANGLE_STRIP"); } void GLACanvas::BeginPolyline() { // Commence drawing of a polyline. glBegin(GL_LINE_STRIP); } void GLACanvas::EndPolyline() { // Finish drawing of a polyline. glEnd(); CHECK_GL_ERROR("EndPolyline", "glEnd GL_LINE_STRIP"); } void GLACanvas::BeginPolyloop() { // Commence drawing of a polyloop. glBegin(GL_LINE_LOOP); } void GLACanvas::EndPolyloop() { // Finish drawing of a polyloop. glEnd(); CHECK_GL_ERROR("EndPolyloop", "glEnd GL_LINE_LOOP"); } void GLACanvas::BeginPolygon() { // Commence drawing of a polygon. glBegin(GL_POLYGON); } void GLACanvas::EndPolygon() { // Finish drawing of a polygon. glEnd(); CHECK_GL_ERROR("EndPolygon", "glEnd GL_POLYGON"); } void GLACanvas::PlaceVertex(glaCoord x, glaCoord y, glaCoord z) { // Place a vertex for the current object being drawn. #ifdef GLA_DEBUG m_Vertices++; #endif glVertex3d(x, y, z); } void GLACanvas::PlaceVertex(glaCoord x, glaCoord y, glaCoord z, glaTexCoord tex_x, glaTexCoord tex_y) { // Place a vertex for the current object being drawn. #ifdef GLA_DEBUG m_Vertices++; #endif glTexCoord2f(tex_x, tex_y); glVertex3d(x, y, z); } void GLACanvas::PlaceIndicatorVertex(glaCoord x, glaCoord y) { // Place a vertex for the current indicator object being drawn. PlaceVertex(x, y, 0.0); } void GLACanvas::BeginBlobs() { // Commence drawing of a set of blobs. if (blob_method == SPRITE) { glPushAttrib(GL_ENABLE_BIT|GL_POINT_BIT); CHECK_GL_ERROR("BeginBlobs", "glPushAttrib"); glBindTexture(GL_TEXTURE_2D, m_BlobTexture); CHECK_GL_ERROR("BeginBlobs", "glBindTexture"); glEnable(GL_ALPHA_TEST); CHECK_GL_ERROR("BeginBlobs", "glEnable GL_ALPHA_TEST"); glPointSize(8); CHECK_GL_ERROR("BeginBlobs", "glPointSize"); glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE); CHECK_GL_ERROR("BeginBlobs", "glTexEnvi GL_POINT_SPRITE"); glEnable(GL_TEXTURE_2D); CHECK_GL_ERROR("BeginBlobs", "glEnable GL_TEXTURE_2D"); glEnable(GL_POINT_SPRITE); CHECK_GL_ERROR("BeginBlobs", "glEnable GL_POINT_SPRITE"); glBegin(GL_POINTS); } else if (blob_method == POINT) { glPushAttrib(GL_ENABLE_BIT); CHECK_GL_ERROR("BeginBlobs", "glPushAttrib"); glEnable(GL_ALPHA_TEST); CHECK_GL_ERROR("BeginBlobs", "glEnable GL_ALPHA_TEST"); glEnable(GL_POINT_SMOOTH); CHECK_GL_ERROR("BeginBlobs", "glEnable GL_POINT_SMOOTH"); glBegin(GL_POINTS); } else { glPushAttrib(GL_TRANSFORM_BIT|GL_VIEWPORT_BIT|GL_ENABLE_BIT); CHECK_GL_ERROR("BeginBlobs", "glPushAttrib"); SetIndicatorTransform(); glEnable(GL_DEPTH_TEST); CHECK_GL_ERROR("BeginBlobs", "glEnable GL_DEPTH_TEST"); glBegin(GL_LINES); } } void GLACanvas::EndBlobs() { // Finish drawing of a set of blobs. glEnd(); if (blob_method != LINES) { CHECK_GL_ERROR("EndBlobs", "glEnd GL_POINTS"); } else { CHECK_GL_ERROR("EndBlobs", "glEnd GL_LINES"); } glPopAttrib(); CHECK_GL_ERROR("EndBlobs", "glPopAttrib"); } void GLACanvas::DrawBlob(glaCoord x, glaCoord y, glaCoord z) { if (blob_method != LINES) { // Draw a marker. PlaceVertex(x, y, z); } else { double X, Y, Z; if (!Transform(Vector3(x, y, z), &X, &Y, &Z)) { printf("bad transform\n"); return; } // Stuff behind us (in perspective view) will get clipped, // but we can save effort with a cheap check here. if (Z <= 0) return; X -= BLOB_DIAMETER * 0.5; Y -= BLOB_DIAMETER * 0.5; PlaceVertex(X, Y + 1, Z); PlaceVertex(X, Y + (BLOB_DIAMETER - 1), Z); for (int i = 1; i < (BLOB_DIAMETER - 1); ++i) { PlaceVertex(X + i, Y, Z); PlaceVertex(X + i, Y + BLOB_DIAMETER, Z); } PlaceVertex(X + (BLOB_DIAMETER - 1), Y + 1, Z); PlaceVertex(X + (BLOB_DIAMETER - 1), Y + (BLOB_DIAMETER - 1), Z); } #ifdef GLA_DEBUG m_Vertices++; #endif } void GLACanvas::DrawBlob(glaCoord x, glaCoord y) { if (blob_method != LINES) { // Draw a marker. PlaceVertex(x, y, 0); } else { x -= BLOB_DIAMETER * 0.5; y -= BLOB_DIAMETER * 0.5; PlaceVertex(x, y + 1, 0); PlaceVertex(x, y + (BLOB_DIAMETER - 1), 0); for (int i = 1; i < (BLOB_DIAMETER - 1); ++i) { PlaceVertex(x + i, y, 0); PlaceVertex(x + i, y + BLOB_DIAMETER, 0); } PlaceVertex(x + (BLOB_DIAMETER - 1), y + 1, 0); PlaceVertex(x + (BLOB_DIAMETER - 1), y + (BLOB_DIAMETER - 1), 0); } #ifdef GLA_DEBUG m_Vertices++; #endif } void GLACanvas::BeginCrosses() { // Plot crosses. if (cross_method == SPRITE) { glPushAttrib(GL_ENABLE_BIT|GL_POINT_BIT); CHECK_GL_ERROR("BeginCrosses", "glPushAttrib"); glBindTexture(GL_TEXTURE_2D, m_CrossTexture); CHECK_GL_ERROR("BeginCrosses", "glBindTexture"); glEnable(GL_ALPHA_TEST); CHECK_GL_ERROR("BeginCrosses", "glEnable GL_ALPHA_TEST"); glPointSize(8); CHECK_GL_ERROR("BeginCrosses", "glPointSize"); glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE); CHECK_GL_ERROR("BeginCrosses", "glTexEnvi GL_POINT_SPRITE"); glEnable(GL_TEXTURE_2D); CHECK_GL_ERROR("BeginCrosses", "glEnable GL_TEXTURE_2D"); glEnable(GL_POINT_SPRITE); CHECK_GL_ERROR("BeginCrosses", "glEnable GL_POINT_SPRITE"); glBegin(GL_POINTS); } else { // To get the crosses to appear at a constant size and orientation on // screen, we plot them in the Indicator transform coordinates (which // unfortunately means they can't be usefully put in an opengl display // list). glPushAttrib(GL_TRANSFORM_BIT|GL_VIEWPORT_BIT|GL_ENABLE_BIT); CHECK_GL_ERROR("BeginCrosses", "glPushAttrib 2"); SetIndicatorTransform(); // Align line drawing to pixel centres to get pixel-perfect rendering // (graphics card and driver bugs aside). glTranslated(-0.5, -0.5, 0); CHECK_GL_ERROR("BeginCrosses", "glTranslated"); glEnable(GL_DEPTH_TEST); CHECK_GL_ERROR("BeginCrosses", "glEnable GL_DEPTH_TEST"); glBegin(GL_LINES); } } void GLACanvas::EndCrosses() { glEnd(); if (cross_method == SPRITE) { CHECK_GL_ERROR("EndCrosses", "glEnd GL_POINTS"); } else { CHECK_GL_ERROR("EndCrosses", "glEnd GL_LINES"); } glPopAttrib(); CHECK_GL_ERROR("EndCrosses", "glPopAttrib"); } void GLACanvas::DrawCross(glaCoord x, glaCoord y, glaCoord z) { if (cross_method == SPRITE) { // Draw a marker. PlaceVertex(x, y, z); } else { double X, Y, Z; if (!Transform(Vector3(x, y, z), &X, &Y, &Z)) { printf("bad transform\n"); return; } // Stuff behind us (in perspective view) will get clipped, // but we can save effort with a cheap check here. if (Z <= 0) return; // Round to integers before adding on the offsets for the // cross arms to avoid uneven crosses. X = rint(X); Y = rint(Y); // Need to extend lines by an extra pixel (which shouldn't get drawn by // the diamond-exit rule). PlaceVertex(X - 3, Y - 3, Z); PlaceVertex(X + 4, Y + 4, Z); PlaceVertex(X - 3, Y + 3, Z); PlaceVertex(X + 4, Y - 4, Z); } #ifdef GLA_DEBUG m_Vertices++; #endif } void GLACanvas::DrawRing(glaCoord x, glaCoord y) { // Draw an unfilled circle const Double radius = 4; assert(m_Quadric); glMatrixMode(GL_MODELVIEW); CHECK_GL_ERROR("DrawRing", "glMatrixMode"); glPushMatrix(); CHECK_GL_ERROR("DrawRing", "glPushMatrix"); glTranslated(x, y, 0.0); CHECK_GL_ERROR("DrawRing", "glTranslated"); gluDisk(m_Quadric, radius - 1.0, radius, 12, 1); CHECK_GL_ERROR("DrawRing", "gluDisk"); glPopMatrix(); CHECK_GL_ERROR("DrawRing", "glPopMatrix"); } void GLACanvas::DrawRectangle(gla_colour fill, gla_colour edge, glaCoord x0, glaCoord y0, glaCoord w, glaCoord h) { // Draw a filled rectangle with an edge in the indicator plane. // (x0, y0) specify the bottom-left corner of the rectangle and (w, h) the // size. SetColour(fill); BeginQuadrilaterals(); PlaceIndicatorVertex(x0, y0); PlaceIndicatorVertex(x0 + w, y0); PlaceIndicatorVertex(x0 + w, y0 + h); PlaceIndicatorVertex(x0, y0 + h); EndQuadrilaterals(); if (edge != fill) { SetColour(edge); BeginPolyline(); PlaceIndicatorVertex(x0, y0); PlaceIndicatorVertex(x0 + w, y0); PlaceIndicatorVertex(x0 + w, y0 + h); PlaceIndicatorVertex(x0, y0 + h); PlaceIndicatorVertex(x0, y0); EndPolyline(); } } void GLACanvas::DrawShadedRectangle(const GLAPen & fill_bot, const GLAPen & fill_top, glaCoord x0, glaCoord y0, glaCoord w, glaCoord h) { // Draw a graduated filled rectangle in the indicator plane. // (x0, y0) specify the bottom-left corner of the rectangle and (w, h) the // size. glShadeModel(GL_SMOOTH); CHECK_GL_ERROR("DrawShadedRectangle", "glShadeModel GL_SMOOTH"); BeginQuadrilaterals(); SetColour(fill_bot); PlaceIndicatorVertex(x0, y0); PlaceIndicatorVertex(x0 + w, y0); SetColour(fill_top); PlaceIndicatorVertex(x0 + w, y0 + h); PlaceIndicatorVertex(x0, y0 + h); EndQuadrilaterals(); glShadeModel(GL_FLAT); CHECK_GL_ERROR("DrawShadedRectangle", "glShadeModel GL_FLAT"); } void GLACanvas::DrawCircle(gla_colour edge, gla_colour fill, glaCoord cx, glaCoord cy, glaCoord radius) { // Draw a filled circle with an edge. SetColour(fill); glMatrixMode(GL_MODELVIEW); CHECK_GL_ERROR("DrawCircle", "glMatrixMode"); glPushMatrix(); CHECK_GL_ERROR("DrawCircle", "glPushMatrix"); glTranslated(cx, cy, 0.0); CHECK_GL_ERROR("DrawCircle", "glTranslated"); assert(m_Quadric); gluDisk(m_Quadric, 0.0, radius, 36, 1); CHECK_GL_ERROR("DrawCircle", "gluDisk"); SetColour(edge); gluDisk(m_Quadric, radius - 1.0, radius, 36, 1); CHECK_GL_ERROR("DrawCircle", "gluDisk (2)"); glPopMatrix(); CHECK_GL_ERROR("DrawCircle", "glPopMatrix"); } void GLACanvas::DrawSemicircle(gla_colour edge, gla_colour fill, glaCoord cx, glaCoord cy, glaCoord radius, glaCoord start) { // Draw a filled semicircle with an edge. // The semicircle extends from "start" deg to "start"+180 deg (increasing // clockwise, 0 deg upwards). SetColour(fill); glMatrixMode(GL_MODELVIEW); CHECK_GL_ERROR("DrawSemicircle", "glMatrixMode"); glPushMatrix(); CHECK_GL_ERROR("DrawSemicircle", "glPushMatrix"); glTranslated(cx, cy, 0.0); CHECK_GL_ERROR("DrawSemicircle", "glTranslated"); assert(m_Quadric); gluPartialDisk(m_Quadric, 0.0, radius, 36, 1, start, 180.0); CHECK_GL_ERROR("DrawSemicircle", "gluPartialDisk"); SetColour(edge); gluPartialDisk(m_Quadric, radius - 1.0, radius, 36, 1, start, 180.0); CHECK_GL_ERROR("DrawSemicircle", "gluPartialDisk (2)"); glPopMatrix(); CHECK_GL_ERROR("DrawSemicircle", "glPopMatrix"); } void GLACanvas::DrawTriangle(gla_colour edge, gla_colour fill, const Vector3 &p0, const Vector3 &p1, const Vector3 &p2) { // Draw a filled triangle with an edge. SetColour(fill); BeginTriangles(); PlaceIndicatorVertex(p0.GetX(), p0.GetY()); PlaceIndicatorVertex(p1.GetX(), p1.GetY()); PlaceIndicatorVertex(p2.GetX(), p2.GetY()); EndTriangles(); SetColour(edge); glBegin(GL_LINE_STRIP); PlaceIndicatorVertex(p0.GetX(), p0.GetY()); PlaceIndicatorVertex(p1.GetX(), p1.GetY()); PlaceIndicatorVertex(p2.GetX(), p2.GetY()); glEnd(); CHECK_GL_ERROR("DrawTriangle", "glEnd GL_LINE_STRIP"); } void GLACanvas::EnableDashedLines() { // Enable dashed lines, and start drawing in them. glLineStipple(1, 0x3333); CHECK_GL_ERROR("EnableDashedLines", "glLineStipple"); glEnable(GL_LINE_STIPPLE); CHECK_GL_ERROR("EnableDashedLines", "glEnable GL_LINE_STIPPLE"); } void GLACanvas::DisableDashedLines() { glDisable(GL_LINE_STIPPLE); CHECK_GL_ERROR("DisableDashedLines", "glDisable GL_LINE_STIPPLE"); } bool GLACanvas::Transform(const Vector3 & v, double* x_out, double* y_out, double* z_out) const { // Convert from data coordinates to screen coordinates. // Perform the projection. return gluProject(v.GetX(), v.GetY(), v.GetZ(), modelview_matrix, projection_matrix, viewport, x_out, y_out, z_out); } void GLACanvas::ReverseTransform(Double x, Double y, double* x_out, double* y_out, double* z_out) const { // Convert from screen coordinates to data coordinates. // Perform the projection. gluUnProject(x, y, 0.0, modelview_matrix, projection_matrix, viewport, x_out, y_out, z_out); CHECK_GL_ERROR("ReverseTransform", "gluUnProject"); } Double GLACanvas::SurveyUnitsAcrossViewport() const { // Measure the current viewport in survey units, taking into account the // current display scale. assert(m_Scale != 0.0); list_flags |= INVALIDATE_ON_SCALE; Double result = m_VolumeDiameter / m_Scale; if (y_size < x_size) { result = result * x_size / y_size; } return result; } void GLACanvas::ToggleSmoothShading() { m_SmoothShading = !m_SmoothShading; } void GLACanvas::ToggleTextured() { m_Textured = !m_Textured; if (m_Textured && m_Texture == 0) { glGenTextures(1, &m_Texture); CHECK_GL_ERROR("ToggleTextured", "glGenTextures"); glBindTexture(GL_TEXTURE_2D, m_Texture); CHECK_GL_ERROR("ToggleTextured", "glBindTexture"); ::wxInitAllImageHandlers(); wxImage img; wxString texture(wmsg_cfgpth()); texture += wxCONFIG_PATH_SEPARATOR; texture += wxT("images"); texture += wxCONFIG_PATH_SEPARATOR; texture += wxT("texture.png"); if (!img.LoadFile(texture, wxBITMAP_TYPE_PNG)) { // FIXME fprintf(stderr, "Couldn't load image.\n"); exit(1); } // Generate mipmaps. gluBuild2DMipmaps(GL_TEXTURE_2D, GL_RGB, // was GL_LUMINANCE img.GetWidth(), img.GetHeight(), GL_RGB, GL_UNSIGNED_BYTE, img.GetData()); CHECK_GL_ERROR("ToggleTextured", "gluBuild2DMipmaps"); glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); CHECK_GL_ERROR("ToggleTextured", "glTexEnvi"); } } bool GLACanvas::SaveScreenshot(const wxString & fnm, wxBitmapType type) const { const int width = x_size; const int height = y_size; unsigned char *pixels = (unsigned char *)malloc(3 * width * (height + 1)); if (!pixels) return false; glReadPixels(0, 0, width, height, GL_RGB, GL_UNSIGNED_BYTE, (GLvoid *)pixels); CHECK_GL_ERROR("SaveScreenshot", "glReadPixels"); unsigned char * tmp_row = pixels + 3 * width * height; // We need to flip the image vertically - this approach should be more // efficient than using wxImage::Mirror(false) as that creates a new // wxImage object. for (int y = height / 2 - 1; y >= 0; --y) { unsigned char * upper = pixels + 3 * width * y; unsigned char * lower = pixels + 3 * width * (height - y - 1); memcpy(tmp_row, upper, 3 * width); memcpy(upper, lower, 3 * width); memcpy(lower, tmp_row, 3 * width); } // NB wxImage constructor calls free(pixels) for us. wxImage grab(width, height, pixels); return grab.SaveFile(fnm, type); } bool GLACanvas::CheckVisualFidelity(const unsigned char * target) const { unsigned char pixels[3 * 8 * 8]; if (double_buffered) { glReadBuffer(GL_BACK); CHECK_GL_ERROR("FirstShow", "glReadBuffer"); } glReadPixels(x_size / 2 - 4, y_size / 2 - 5, 8, 8, GL_RGB, GL_UNSIGNED_BYTE, (GLvoid *)pixels); CHECK_GL_ERROR("CheckVisualFidelity", "glReadPixels"); if (double_buffered) { glReadBuffer(GL_FRONT); CHECK_GL_ERROR("FirstShow", "glReadBuffer"); } #if 0 // Show what got drawn and what was expected for debugging. for (int y = 0; y < 8; ++y) { for (int x = 0; x < 8; ++x) { int o = (y * 8 + x) * 3; printf("%c", pixels[o] ? 'X' : '.'); } printf(" "); for (int x = 0; x < 8; ++x) { int o = (y * 8 + x) * 3; printf("%c", target[o] ? 'X' : '.'); } printf("\n"); } #endif return (memcmp(pixels, target, sizeof(pixels)) == 0); } void GLACanvas::ReadPixels(int width, int height, unsigned char * buf) const { CHECK_GL_ERROR("ReadPixels", "glReadPixels"); glReadPixels(0, 0, width, height, GL_RGB, GL_UNSIGNED_BYTE, (GLvoid *)buf); } void GLACanvas::PolygonOffset(bool on) const { if (on) { glPolygonOffset(1.0, 1.0); glEnable(GL_POLYGON_OFFSET_FILL); } else { glDisable(GL_POLYGON_OFFSET_FILL); } }